Recent Publications

  
86. Contracted Porphyrins and Calixpyrroles: Synthetic Challenges and Ring-Contraction Effects
K. Watanabe, N. N. Pati, Y. Inokuma
Chem. Sci. 2024, accepted.
TOC
Unique ring-contraction effects are discussed for tripyrrolic porphyrin-related macrocycles.
85. Implementation of Highly Crystalline Polyketones as Solid Polymer Electrolytes in high-temperature Lithium Metal Batteries
R. Andersson, I. L Johansson, K. I. Shivakumar, G. Hernández, Y. Inokuma, J. Mindemark
Solid State Ionics 2024, 410, 116542.
TOC
International collaborative research through the MANABIYA(Acedemic) program of ICReDD.
84. One-pot, Gram-Scale Synthesis of Calix[5]- and Calix[6]furan: Derivatization for Polyketone- and Isopyrazole-based Macrocycles with Conformational Analysis
T. Yoneda, T. Sano, N. N. Pati, Y. Ide, Y. Inokuma
Asian J. Org. Chem. 2024, 13, e202400023.
TOC
Practical gram-scale synthesis of calix[n]furans (n = 5, 6) and derivatization to polyketone and isopyrazole macrocycles
83. Strain-Based Design, Direct Macrocyclization, and Metal Complexation of Thiazole-Containing Calix[3]pyrrole Analogues
K. Watanabe, K. Shibata, T. Ichino, Y. Ide, T. Yoneda, S. Maeda, Y. Inokuma
ChemRxiv DOI: 10.26434/chemrxiv-2024-6nqnq
TOC
Evaluation and visualization of ring strain for molecular design of feasible calix[3]pyrrole analogues and their coordination chemistry in collaboration with Prof. Maeda's group
82. Drug–drug Conjugates of MEK and Akt Inhibitors for RAS-mutant Cancers
H. Fujita, S. Arai, H. Arakawa, K. Hamamoto, T. Kato, T. Arai, N. Nitta, K. Hotta, N. Hosokawa, T. Ohbayashi, C. Takahashi, Y. Inokuma, I. Tamai, S. Yano, M. Kunishima, Y. Watanabe
Bioorg. Med. Chem. 2024, 102, 117674.
ChemRxiv DOI: 10.26434/chemrxiv-2023-ps4h1-v2
TOC
Collaboration research with medical researchers at Kanazawa University on cancer drug conjugates using carbonyl rope-related linkers
81. Machine Learning-Based Analysis of Molar and Enantiomeric Ratios and Reaction Yields Using Images of Solid Mixtures
Y. Ide, H. Shirakura, T. Sano, M. Murugavel, Y. Inaba, S. Hu, I. Takigawa, Y. Inokuma
Ind. Eng. Chem. Res. 2023, 62, 13790-13798.
ChemRxiv DOI: 10.26434/chemrxiv-2023-3gdsb
TOC
Image-based machine learning system capable of predicting mixing ratios of organic/inorganic compounds, polymorphs, and enantiomers (Selected as Cover Picture)
Press release (Hokkaido University)
80. Identifying High-Grade Serous Ovarian Carcinoma-Specific Extracellular Vesicles by Polyketone-coated Nanowires
A. Yokoi, M. Ukai, T. Yasui, Y. Inokuma, K. Hyeon-Deuk, J. Matsuzaki, K. Yoshida, M. Kitagawa, K. Chattrairat, M. Iida, T. Shimada, Y. Manabe, I-Y. Chang, E. Asano-Inami, Y. Koya, A. Nawa, K. Nakamura, T. Kiyono, T. Kato, A. Hirakawa, Y. Yoshioka, T. Ochiya, T. Hasegawa, Y. Baba, Y. Yamamoto, H. Kajiyama
Sci. Adv. 2023,9, eade6958
TOC
Device application of our polyketones for capturing high-grade serous ovarian carcinoma-specific extracellular vesicles
79. The Geometry of Calix[3]pyrrole and the Formation of the Calix[3]pyrrole·F–Complex in Solution
R. Saha, J. Pirillo, Y. Ide, Y. Inokuma, Y. Hijikata
Theor. Chem. Acc. 2023, 142, Article Number 50.
TOC
MD simulation study for calix[3]pyrrole–fluoride complexation with Hijikata group
78. Chain Length-Dependent Hydrogen-Bonded Self-Assembly of Terminally Functionalized Discrete Polyketones
K. I. Shivakumar, Y. Manabe, T. Yoneda, Y. Ide, Y. Inokuma
Precis. Chem. 2023, 1, 34-39.
TOC
Hydrogen-bonding behaviors of terminally COOH or pyridine-substituted polyketones were analyzed.
77. Chiral Calix[3]pyrrole Derivatives: Synthesis, Racemization Kinetics, and Ring Expansion to Calix[9]- and Calix[12]pyrrole Analogues
Y. Inaba, J. Yang, Y. Kakibayashi, T. Yoneda, Y. Ide, Y. Hijikata, J. Pirillo, R. Saha, J. L. Sessler, Y. Inokuma
Angew. Chem. Int. Ed. 2023, 62, e202301460
TOC
An inherently chiral calix[3]pyrrole derivative and its strain-induced ring expansion up to calix[12]pyrrole-type macrocycles
76. Toward Calix[2]-Type Macrocycles: Synthesis and Structural Analysis of Cyclic Tetraketone and Highly Strained Furanophane
T. Sano, Y. Sun, T. Mukai, Y. Inaba, T. Yoneda, Y. Ide, J. Pirillo, Y. Hijikata, Y. Inokuma
J. Porphyrins Phthalocyanines 2023, 27, 1067-1073.
TOC
An odyssey for synthesis of calix[2]pyrrole started.
Invited Article dedicated to Prof. Jonathan L. Sessler on the occasion of his 65th birthday.
75. Absorption Spectra of Calix[3]pyrrole Analogues as Probes for Contracted Macrocycles
K. Watanabe, R. Saha, Y. Inaba, Y. Manabe, T. Yoneda, Y. Ide, Y. Hijikata, Y. Inokuma
J. Porphyrins Phthalocyanines 2023, 27, 157-163.
TOC
Characteristically red-shifted absorption band was observed for calix[3]pyrrole.
Invited Article dedicated to Prof. Tomás Torres on the occasion of his 70th birthday.
74. Carbonyl-Containing Solid Polymer Electrolyte Host Materials: Conduction and Coordination in Polyketone, Polyester and Polycarbonate Systems
T. Eriksson, H. Gudla, Y. Manabe, T. Yoneda, D. Friesen, C. Zhang, Y. Inokuma, D. Brandell, J. Mindemark
Macromolecules 2022, 55, 10940-10949.
TOC
The 2nd collaboration paper with Prof. J. Mindemark group.
73. Determination of the Critical Chain Length for Macromolecular Crystallization Using Structurally Flexible Polyketones
Y. Ide, Y. Manabe, Y. Inaba, Y. Kinoshita, J. Pirillo, Y. Hijikata, T. Yoneda, K. I. Shivakumar, S. Tanaka, H. Asakawa, Y. Inokuma
Chem. Sci. 2022, 13, 9848–9854.
TOC
Critical chain length of macromolecular crystallization for carbonyl ropes was determied.
Selected as Front Cover!
72. Alkali Metal Ion Binding Using Cyclic Polyketones
N. Ozawa, K. I. Shivakumar, M. Murugavel, Y. Inaba, T. Yoneda, Y. Ide, J. Pirillo, Y. Hijikata, Y. Inokuma
Chem. Commun. 2022, 58, 2971–2974.
TOC
Alkali metal ion binding behavior of cyclic polyketones was discovered. (Selected as Inside Front Cover)
Featured in Chemical Communications HOT Articles 2022.
71. Strain-induced Ring Expansion Reactions of Calix[3]pyrrole-related Macrocycles
Y. Inaba, Y. Kakibayashi, Y. Ide, J. Pirillo, Y. Hijikata, T. Yoneda, Y. Inokuma
Chem. Eur. J. 2022, 28, e202200056.
TOC
Analogues of calix[3]pyrrole were synthesized to investigate the scope and mechanism of ring expansion reaction.
Chosen as "Hot paper"
70. Hybrid Eu(III) Coordination luminophore Standing on Silica Nanoparticles by Two Legs for Enhanced Luminescence
T. Zhang, Y. Kitagawa, R. Moriake, P. P. F. Rosa, M. J. Islam, T. Yoneda, Y. Inokuma, K. Fushimi, Y. Hasegawa
Chem. Eur. J. 2021, 27, 14438–14443.
TOC
A joint paper with Prof. Hasegawa.
69. Calix[3]pyrrole: A Missing Link in Porphyrin-Related Chemistry
Y. Inaba, Y. Nomata, Y. Ide, J. Pirillo, Y. Hijikata, T. Yoneda, A. Osuka, J. L. Sessler, Y. Inokuma
J. Am. Chem. Soc. 2021, 143, 12355-12360.
TOC
Calix[3]pyrrole was finally synthesized from a carbonyl rope.
Highlighted by Science "In Other Journals".
Highlighted by Synfacts
Press release (Hokkaido University)   
68. Isopyrazole-Masked Tetraketone: Tautomerism and Functionalization for Fluorescent Metal Ligands
H. Shirakura, Y. Manabe, C. Kasai, Y. Inaba, M. Tsurui, Y. Kitagawa, Y. Hasegawa, T. Yoneda, Y. Ide, Y. Inokuma
Eur. J. Org. Chem. 2021, 4345–4349.
TOC
Fluorescent metal ligand was synthesized by isopyrazole-masking strategy.
67. Polyketone-Based Molecular Ropes as Versatile Components for Functional Materials
Y. Inokuma, Y. Inaba
Bull. Chem. Soc. Jpn. 2021, 94, 2187-2194.
TOC
BCSJ Account for application of carbonyl ropes as a base component for functional molecular materials.
66. Insoluble π‐Conjugated Polyimine as an Organic Adsorbent for Group 10 Metal Ions
H. Shirakura, Y. Hijikata, J. Pirillo, T. Yoneda, Y. Manabe, M. Murugavel, Y. Ide, Y. Inokuma
Eur. J. Inorg. Chem. 2021, 1705-1708.
TOC
Metal-ion adsorbent property of conjugated polyimines generated from aliphatic polyketones.
65. Aliphatic Polyketones as Classic yet New Molecular Ropes for Structural Diversity in Organic Synthesis
Y. Inokuma, T. Yoneda, Y. Ide, S. Yoshioka
Chem. Commun., 2020, 56, 9079-9093.
TOC
Feature Article of recent developments in carbonyl ropes chemistry.
64. Spirosilicate Dimers of a Bowl-shaped Diol Generated by Intramolecular Cyclization of an Aliphatic Tetraketone Chains
Y. Inaba, Y. Inokuma
Chem. Lett. 2020, 49, 882-884.
TOC
Synthesis of hydrolysis-stable spirosilicates using a bowl-shaped diol generated by intramolecular cyclization of carbonyl a rope.
63. Modular Synthesis of Oligoacetylacetones via Site-selective Silylation of Acetylacetone Derivatives
P. Sarkar, Y. Inaba, H. Shirakura, T. Yoneda, Y. Inokuma
Org. Biomol. Chem. 2020, 18, 3297-3302.
TOC
Modular synthesis of carbonyl ropes enables to prepare aliphatic oligoketones with various substituent sequences.
62. Supramolecular Conformational Control of Aliphatic Oligoketones by Rotaxane Formation
Y. Manabe, K. Wada, Y. Baba, T. Yoneda, T. Ogoshi, Y. Inokuma
Org. Lett. 2020, 22, 3224-3228.
TOC
Rotaxane formation between pillar[5]arene and carbonyl rope. Collaborative research with Prof. Ogoshi group at Kyoto Univ.
61. Chiral Monolayers with Achiral Tetrapod Molecules on Highly Oriented Pyrolytic Graphite
H. Asakawa, S. Matsui, Q. T. Trinh, H. Hirao, Y. Inokuma, T. Ogoshi, S. Tanaka, K. Komatsu, A. Ohta, T. Asakawa, T. Fukuma
J. Phys. Chem. C 2020, 124, 7760-7767.
TOC
Collaboration research paper with PRESTO "Hyper-nano Space Design" and Kanazawa Univ. WPI-NanoLSI members on orientation of tetrapod molecules on HOPG surface.
60. Polyketones as Host Materials for Solid Polymer Electrolytes
T. Eriksson, A. Mace, Y. Manabe, M. Yoshizawa-Fujita, Y. Inokuma, D. Brandell, J. Mindemark
J. Electrochem. Soc. 2020, 167, 070537.
TOC
International joint research on application of polyketones for solid electrolytes with Dr. Jonas Mindemark (Uppsala Univ.) and Prof. Masahiro Yoshizawa-Fujita (Sophia Univ.).
59. Luminescent Coordination Polymers Constructed from Flexible, Tetradentate Diisopyrazole Ligand and Copper(I) Halides
T. Yoneda, C. Kasai, Y. Manabe, M. Tsurui, Y. Kitagawa, Y. Hasegawa, P. Sarkar, Y. Inokuma
Chem. Asian J. 2020, 15, 601-605.
TOC
Luminescent coordination polymers generated from an aliphatic imine ligand and Cu(I) halides. Thermochromic behavior was observed for 2-dimensional Cu4I4 cluster network. (Selected as Front Cover)
58. Splitting and Reorientation of π-Conjugation by an Unprecedented Photo-Rearrangement Reaction
Y. Inaba, T. Yoneda, Y. Kitagawa, K. Miyata, Y. Hasegawa, Y. Inokuma
Chem. Commun. 2020, 56, 348-351.
TOC
Nobel photo-induced rearrangement reaction for splitting π-conjugation of polyene. (Selected as Back Cover)
57. Identification of Actinomycin D as a Specific Inhibitor of the Alternative Pathway of Peptidoglycan Biosynthesis
Y. Ogasawara, Y. Shimizu, Y. Sato, T. Yoneda, Y. Inokuma, T. Dairi
J. Antibiot. 2020, 73, 125-127.
TOC
A joint paper with Dr. Ogasawara and Prof. Dairi.
56. Asymmetric Synthesis of a 5,7-Fused Ring System Enabled by an Intramolecular Buchner Reaction with Chiral Rhodium Catalyst
T. Hoshi, E. Ota, Y. Inokuma, J. Yamaguchi
Org. Lett. 2019, 21, 10081-10084.
TOC
A joint paper with Prof. Yamaguchi (Waseda Univ.).
55. Aliphatic Polyketones as Shapable Molecular Chains
Y. Inokuma
J. Synth. Org. Chem. Jpn. 2019, 77, 1078-1085.
TOC
An account of carbonyl ropes.
54. Two-Step Transformation of Aliphatic Polyketones into π-Conjugated Polyimines
Y. Manabe, M. Uesaka, T. Yoneda, Y. Inokuma
J. Org. Chem. 2019, 84, 9957-9964.
TOC
Carbonyl ropes were converted into highly π-conjugated imine 'sashes'. (Selected as Cover Picture)
53. Control over Coordination Self-Assembly of Flexible, Multidentate Ligands by Stepwise Metal Coordination of Isopyrazole Subunits
Y. Ashida, Y. Manabe, S. Yoshioka, T. Yoneda, Y. Inokuma
Dalton Trans. 2019, 48, 818-822.
TOC
Self-assembly of oligoimine chains by the aid of stepwise palladium ion coordination. (Selected as Inside Back Cover)
52. Bioinspired Synthesis of Pentalene-based Chromophores from an Oligoketone Chain
Y. Saito, M. Higuchi, S. Yoshioka, H. Senboku, Y. Inokuma
Chem. Commun. 2018, 54, 6788-6791.
TOC
Folding a carbonyl string to make chromophores that absorb and emit visible light.
51. Oligoacetylacetones as Shapable Carbon Chains and Their Transformation to Oligoimines for Construction of Metal-organic Architectures
M. Uesaka, Y. Saito, S. Yoshioka, Y. Domoto, M. Fujita, Y. Inokuma
Communications Chemistry 2018, 1, Article Number 23.
TOC
Our first paper from Hokkaido University!! The concept, synthesis and transformation of polycarbonyl chains are reported.
Behind the Paper (Nature Research Chemistry Community)
50. Chiral Crystalline Sponges for the Absolute Structure Determination of Chiral Guests
K. Yan, R. Dubey, T. Arai, Y. Inokuma, M. Fujita
J. Am. Chem. Soc. 2017, 139, 11341-11344.
49. Structural Elucidation of Trace Amounts of Volatile Compounds Using the Crystalline Sponge Method
N. Zigon, T. Kikuchi, J. Ariyoshi, Y. Inokuma, M. Fujita
Chem. Asian J. 2017, 12, 1057-1061.
48. Finding a New Crystalline Sponge from a Crystallographic Database
Y. Inokuma, K. Matsumura, S. Yoshioka, M. Fujita
Chem. Asian. J. 2017, 12, 208-211. (Front Cover)
47. X-ray Structure Analysis of Ozonides by the Crystalline Sponge Method
S. Yoshioka, Y. Inokuma, V. Duplan, R. Dubey, M. Fujita
J. Am. Chem. Soc. 2016, 138, 10140-10142.
46. A Saccharide-based Crystalline Sponge for Hydrophilic Guests
G.-H. Ning, K. Matsumura, Y. Inokuma, M. Fujita
Chem. Commun. 2016, 52, 7013-7015.
45. Structure Determination of Microbial Metabolites by the Crystalline Sponge Method
Y. Inokuma, T. Ukegawa, M. Hoshino, M. Fujita
Chem. Sci. 2016, 7, 3910-3913.
44. The Crystalline Sponge Method Updated
M. Hoshino, A. Khutia, H. Xing, Y. Inokuma, M. Fujita
IUCrJ 2016, 3, 139-151.
43. Where is the Oxygen? Structural Analysis of a-Humulene Oxidation Products by the Crystalline Sponge Method
N. Zigon, M. Hoshino, S. Yoshioka, Y. Inokuma, M. Fujita
Angew. Chem. Int. Ed. 2015, 54, 9033-9037.
42. Absolute Structure Determination of Compounds with Axial and Planar Chirality Using the Crystalline Sponge Method
S. Yoshioka, Y. Inokuma, M. Hoshino, T. Sato, M. Fujita
Chem. Sci. 2015, 6, 3765-3768.
41. Networked-Cage Microcrystals for Evaluation of Host-guest Interactions
S. Matsuzaki, T. Arai, K. Ikemoto, Y. Inokuma, M. Fujita
J. Am. Chem. Soc. 2014, 136, 17899-17901.
40. Visualization of Solution Chemistry by X-ray Crystallography Using Porous Coordination Networks
Y. Inokuma, M. Fujita
Bull. Chem. Soc. Jpn. 2014, 87, 1161-1176.
(Award Article, Back Cover)
39. Radical C-H Functionalization of Heteroarenes under Electrochemical Control
A. O'Brien, A. Maruyama, Y. Inokuma, M. Fujita, P. S. Baran, D. G. Blackmond
Angew. Chem. Int. Ed. 2014, 53, 11868-11871.
(Selected as a Hot Paper)
38. X-ray Snapshot Observation of Palladium-Mediated Aromatic Bromination in a Porous Complex
K. Ikemoto, Y. Inokuma, K. Rissanen, M. Fujita
J. Am. Chem. Soc. 2014, 136, 6892-6895.
(Highlighted by "Chemistry World", RSC)
37. Preparation and Guest-uptake Protocol for a Porous Complex Useful for 'Crystal-free' Crystallography
Y. Inokuma, S. Yoshioka, J. Ariyoshi, T. Arai, M. Fujita
Nature Protocols 2014, 9, 246-252.
36. Stable Encapsulation of Acrylate Esters in Networked Molecular Capsules
G.-H Ning, Y. Inokuma, M. Fujita
Chem. Asian J. 2014, 9, 466-468.
(VIP paper, Inside Cover)
35. Unique Ultrafast Energy Transfer in a Series of Phenylene-bridged Subporphyrin-porphyrin Hybrids
J. Oh, J. Sung, M. Kitano, Y. Inokuma, A. Osuka, D. Kim
Chem. Commun. 2014, 50, 10424-10426.
34. Dynamic Behavior of M6L4 Capsules in Solution and Crystalline States
G.-H Ning, Y. Inokuma, M. Fujita
Chem. Asian J. 2013, 8, 2596-2599.
33. X-ray analysis on the nanogram to microgram scale using porous complexes
Y. Inokuma, S. Yoshioka, J. Ariyoshi, T. Arai, Y. Hitora, K. Takada, S. Matsunaga, K. Rissanen, M. Fujita
Nature 2013, 495, 461-466.
(Highlighted by "Nature news and views" )
(Highlighted by "C&EN", ACS)
(Highlighted by "Chemistry World", RSC)
32. Reagent-Installed Capsule Network: Selective Thiocarbamoylation of Aromatic Amines in Crystals with Pre-installed CH3NCS
Y. Inokuma, G.-H. Ning, M. Fujita
Angew. Chem. Int. Ed. 2012, 51, 2379-2381.
31. Oxocyclohexadienylidene-Substituted Subporphyrins
S. Hayashi, J. Sung, Y. Sung, Y. M. Sung, Y. Inokuma, D. Kim, A. Osuka
Angew. Chem. Int. Ed. 2011, 50, 3253-3256.
30. Bimolecular Reaction via the Successive Introduction of Two Substrates into the Crystals of Networked Molecular Cages
Y. Inokuma, N. Kojima, T. Arai, M. Fujita
J. Am. Chem. Soc. 2011, 133, 19691-19693.
29. Diels-Alder via Molecular Recognition in a Crystalline Molecular Flask
K. Ikemoto, Y. Inokuma, M. Fujita
J. Am. Chem. Soc. 2011, 133, 16806-16808.
28. Shedding Light on Hidden Reaction Pathways in Radical Polymerization by a Porous Coordination Network
Y. Inokuma, S. Nishiguchi, K. Ikemoto, M. Fujita
Chem. Commun. 2011, 47, 12113-12115.
27. Synthesis and Properties of Boron(III)-Coordinated Subbacteriochlorins
S. Hayashi, E. Tsurumaki, Y. Inokuma, P. Kim, Y. M. Sung, D. Kim, A. Osuka
J. Am. Chem. Soc. 2011, 133, 4254-4256.
26. Crystalline Molecular Flasks
Y. Inokuma, M. Kawano, M. Fujita
Nature Chem. 2011, 3, 349-358.
25. A Molecular Capsule Network: Guest Encapsulation and Control of Diels-Alder Reactivity
Y. Inokuma, S. Yoshioka, M. Fujita
Angew. Chem. Int. Ed. 2010, 49, 8912-8914.
24. Networked Molecular Cages as Crystalline Sponges for Fullerenes and Other Guests
Y. Inokuma, T. Arai, M. Fujita
Nature Chem. 2010, 2, 780-783.
(Highlighted by "C&EN", ACS)
23. The Reaction of Organozinc Compounds with an Aldehyde within a Crystalline Molecular Flask
K. Ikemoto, Y. Inokuma, M. Fujita
Angew. Chem. Int. Ed. 2010, 49, 5750-5752.
22. The Catalytic Z to E Isomerization of Stilbenes in a Photosensitizing Porous Coordination Network
K. Ohara, Y. Inokuma, M. Fujita
Angew. Chem. Int. Ed. 2010, 49, 5507-5509.
21. Regioselective Huisgen Cycloaddition within Porous Coordination Networks
T. Kawamichi, Y. Inokuma, M. Fujita
Angew. Chem. Int. Ed. 2010, 49, 2375-2377.
(Highlighted by "Noteworthy Chemistry", ACS)
20. A Porous Coordination Network Catalyzes an Olefin Isomerization Reaction in the Pore
K. Ohara, M. Kawano, Y. Inokuma, M. Fujita
J. Am. Chem. Soc. 2010, 132, 30-31.
19. meso-Tris(oligo-2,5-thienylene)-Substituted Subporphyrins
S. Hayashi, Y. Inokuma, A. Osuka
Org. Lett. 2010, 12, 4148-4151.
18. meso-Trifluoromethyl-substituted Subporphyrin from Ring-splitting Reaction of meso-Trifluoromethyl-substituted [32]Heptaphyrin(1.1.1.1.1.1.1)
R. Sakamoto, S. Saito, S. Shimizu, Y. Inokuma, N. Aratani, A. Osuka
Chem. Lett. 2010, 39, 439-441.
17. meso-Trialkyl-substituted Subporphyrins
S. Hayashi, Y. Inokuma, S. Easwaramoorthi, K. S. Kim, D. Kim, A. Osuka
Angew. Chem. Int. Ed. 2010, 49, 321-324.
16. Versatile Photophysical Properties of meso-Aryl Substituted Subporphyrins: Dipolar and Octupolar Charge-Transfer Interactions
S. Easwaramoorthi, J.-Y. Shin, S. Cho, P. Kim, Y. Inokuma, E. Tsurumaki, A. Osuka, D. Kim
Chem. Eur. J. 2009, 15, 12005-12017.
15. Capped Subporphyrins
Y. Inokuma, A. Osuka
Chem. Eur. J. 2009, 15, 6863-6876.
14. 1,4-Phenylene-bridged Subporphyrin-porphyrin Dyad, Triad, and Tetrad
Y. Inokuma, S. Hayashi, A. Osuka
Chem. Lett. 2009, 38, 206-207.
13. Peripheral Hexabromination, Hexaphenylation, and Hexaethynylation of meso-Aryl- Substituted Subporphyrins
E. Tsurumaki, Y. Inokuma, S. Easwaramoorthi, J. M. Lim, D. Kim, A. Osuka
Chem. Eur. J. 2009, 15, 237-247.
12. 3,3- and 4,4-Biphenylene-Bridged Subporphyrin Dimers
Y. Inokuma, A. Osuka
Org. Lett. 2008, 10, 5561-5564.
11. Unambiguous Identification of Möbius Aromaticity for meso-Aryl-Substituted [28]Hexaphyrins(1.1.1.1.1.1)
J. Sankar, S. Mori, S. Saito, H. Rath, M. Suzuki, Y. Inokuma, H. Shinokubo, K. S. Kim, Z. S. Yoon, J.-Y. Shin, J. M. Lim, Y. Matsuzaki, O. Matsushita, A. Muranaka, N. Kobayashi, D. Kim, A. Osuka
J. Am. Chem. Soc. 2008, 130, 13568-13579.
10. meso-(4-(N,N-Dialkylamino)phenyl)-Substituted Subporphyrins: Remarkably Perturbed Absorption Spectra and Enhanced Fluorescence by Intramolecular Charge Transfer Interactions
Y. Inokuma, S. Easwaramoorthi, Z. S. Yoon, D. Kim, A. Osuka
J. Am. Chem. Soc. 2008, 130, 12234-12235.
9. Effective Expansion of the Subporphyrin Chromophore Through Conjugation with meso-Oligo(1,4-phenyleneethynylene) Substituents: Octupolar Effect on Two-Photon Absorption
Y. Inokuma, S. Easwaramoorthi, S. Y. Jang, K. S. Kim, D. Kim, A. Osuka
Angew. Chem. Int. Ed. 2008, 47, 4840-4843.
8. Subporphyrins: Emerging Contracted Porphyrins with Aromatic 14π-Electronic Systems and Bowl-Shaped Structures: Rational and Unexpected Synthetic Routes
Y. Inokuma, A. Osuka
Dalton Trans. 2008, 2517-2526. (Perspective, Front Cover)
7. Synthesis and Characterization of meso-Aryl-Substituted Subchlorins
E. Tsurumaki, S. Saito, K. S. Kim, J. M. Lim, Y. Inokuma, D. Kim, A. Osuka
J. Am. Chem. Soc. 2008, 130, 438-439.
6. Complementary Face-to-Face Dimer Formation From meso-Aryl Subporphyrins Bearing a 2-Carboxyphenyl Group
Y. Inokuma, A. Osuka
Chem. Commun. 2007, 2938-2940.
5. meso-Aryl-Substituted Subporphyrins: Synthesis, Structures, and Large Substituent Effects on Their Electronic Properties
Y. Inokuma, Z. S. Yoon, D. Kim, A. Osuka
J. Am. Chem. Soc. 2007, 129, 4747-4761.
4. Tribenzosubporphines: Synthesis and Characterization
Y. Inokuma, J. H. Kwon, T. K. Ahn, M.-C. Yoon, D. Kim, A. Osuka
Angew. Chem. Int. Ed. 2006, 45, 961-964.
3. Enlarged π-Electronic Network of a meso-meso, β-β, β-β Triply Linked Dibenzoporphyrin Dimer that Exhibits a Large Two-Photon Absorption Cross Section
Y. Inokuma, N. Ono, H. Uno, D. Y. Kim, S. B. Noh, D. Kim, A. Osuka
Chem. Commun. 2005, 3782-3784.
2. A Doubly N-Fused Benzohexaphyrin and Its Rearrangement to a Fluorescent Macrocycle upon DDQ Oxidation
Y. Inokuma, T. Matsunari, N. Ono, H. Uno, A. Osuka
Angew. Chem. Int. Ed. 2005, 44, 1856-1860.
1. meso-Porphyrinyl-Substituted Porphyrin and Expanded Porphyrins
Y. Inokuma, A. Osuka
Org. Lett. 2004, 6, 3663-3666.