Research Topics

Nitrogen Cycle

  • Zhang, Gao, K. Kobayashi, Narita

Microbial Fuel Cells

  • Ishizaki, Koffi

Biofilms

  • Ishizaki, Papry

Fecal pollution

  • M. Kobayashi

Gastroenteritis viruses

  • Itoh, Mohan, Andri, Hashiba, Miyamura, Kadoya, Kawai, Watanabe, Peiyi
Nitrogen Cycle
Application of anammox process for nitrogen removal

Anaerobic ammonium oxidation (anammox) is a biological process in which ammonium is directly converted to dinitrogen gas with nitrite as an electron accepter under anoxic conditions. The anammox process is a new and promising alternative to the conventional nitrogen removal processes. The combination of partial nitrification and anammox process for nitrogen removal would lead to a significant reduction of costs for aeration and exogenous electron donor as compared to the conventional nitrification-denitrification process.

Analysis of physiological characteristics of anammox bacterium

Anammox is carried out by chemolithoautotrophic bacteria belonging to the order planctomycetales. Anammox bacterium grows extremely slowly, dividing only once a week. Thus it is difficult to cultivate this bacterium by conventional microbiological techniques and there is limited information on physiological characteristics of this bacterium. Therefore extensive information is important for practical application.

The objectives of this study are

(ⅰ) to promptly establish and optimize a combination of partial nitrification and anammox process which will give a cost effective nitrogen removal, and (ⅱ) to analyze physiological characteristics of anammox bacterium and to make an important contribution to practical application.

Current research topics

Anammox team Current topic
▲click
  

Past presentation

The 2nd International Conference on Nitrification and the 16th European Nitrogen Cycle meeting
Presenter: Dr. Oshiki
The 2nd International Conference on Nitrification and the 16th European Nitrogen Cycle meeting
▲ click

Publications(2007-)

  1. Experimental evidence for in situ nitric oxide production in anaerobic ammonia-oxidizing bacterial granules
    Rathnayake, R., Oshiki, M., Ishii, S., Segawa, T., Satoh, H., Okabe, S.
    Environmental Science & Technology, accepted.
  2. Rapid cultivation of free-living planktonic anammox cells
    Zhang, L., Okabe, S.
    Water Research, 2017, 127, 204-210.
  3. Genetic diversity of marine anaerobic ammonium-oxidizing bacteria as revealed by genomic and proteomic analyses of ‘Candidatus Scalindua japonica’
    Oshiki, M., Mizuto, K., Kimura, Z., Kindaichi, T., Satoh, H., Okabe, S.
    Environmental Microbiology Reports, 2017, 9, 550-561.
  4. Microbial competition among anammox bacteria in nitrite-limited bioreactors
    Zhang, L., Narita, Y., Gao, L., Ali, M., Oshiki, M., Ishii, S., Okabe, S.
    Water Research, 2017, 125, 249-258.
  5. Enrichment and physiological characterization of an anaerobic ammonium-oxidizing bacterium 'Candidatus Brocadia sapporoensis'
    Narita, Y., Zhang, L., Kimura, Z., Ali, M., Fujii, T., Okabe, S.
    Systematic and Applied Microbiology, 2017, 40, 448-457.
  6. Anammox biomass carrying efficiency of polyethylene non-woven sheets as a carrier material
    Cho, S., Jung, M., Ju, D., Lee, Y.H., Cho, K., Okabe, S.
    Environmental Technology, accepted.
  7. Maximum specific growth rate of anammox bacteria revisited
    Zhang, L., Narita, Y., Gao, L., Ali, M., Oshiki, M., Okabe S.
    Water Research, 2017, 116, 296-303.
  8. Draft genome sequence of the anaerobic ammonium-oxidizing bacterium "Candidatus Brocadia sp. 40"
    Ali, M, Haroon, M.F., Narita, Y., Zhang, L., Rangel Shaw, D., Okabe, S., Saikaly, P.E.
    Genome Announcements, 2016, 4(6), e01377-16.
  9. Denitrification and nitrate-dependent Fe(II) oxidation in various Pseudogulbenkiania strains
    Ishii, S., Joikai, K., Otsuka, S., Senoo, K., Okabe, S.
    Microbes and Environments, 2016, 31(3), 293-298.
  10. Source identification of nitrous oxide emission pathways from a single-stage nitritation-anammox granular reactor
    Ali, M., Rathnayake, R.M., Zhang, L., Ishii, S., Kindaichi, T., Satoh, H., Toyoda, S., Yoshida, N., Okabe, S.
    Water Research, 2016, 102, 147-157.
  11. Ecology and physiology of anaerobic ammonium oxidizing (anammox) bacteria
    Oshiki, M., Satoh, H. and Okabe, S.
    Environmental Microbiology, 2016, 18(9), 2784-2796.
  12. Effects of dissolved oxygen and pH on nitrous oxide production rates in autotrophic partial nitrification granules
    Rathnayake M. L. D. R, Oshiki, M., Ishii, S., Segawa, T., Satoh, H. and Okabe, S.
    Bioresource Technology, 2015, 195, 15-22.
  13. Anammox-based technologies for nitrogen removal: Advances in process start-up and remaining issues
    Ali, M. and Okabe, S.
    Chemosphere, 2015, 141, 144-153.
  14. Physiological characterization of anaerobic ammonium oxidizing bacterium "Candidatus Jettenia caeni"
    Ali, M., Oshiki, M., Awata, T., Isobe, K., Kimura, Z., Yoshikawa, H., Hira, D., Kindaichi, T., Satoh, H., Fujii, T. and Okabe, S.
    Environmental Microbiology, 2015, 17(6), 2172-2189.
  15. Rapid and successful start-up of anammox process by immobilizing the minimal quantity of biomass in PVA-SA gel beads
    Ali, M., Oshiki, M., Rathnayake, L., Ishii, S., Satoh, H. and Okabe, S.
    Water Research, 2015, 79, 147–157.
  16. Draft genome sequencing of anaerobic ammonium oxidizing bacterium, "Candidatus Brocadia sinica"
    Oshiki, M., Shinyako-Hata, K., Satoh, H. and Okabe, S.
    Genome Announcements, 2015, 3(2), e00267-15.
  17. Identification of key N2O production pathways in aerobic partial nitrifying granules
    Ishii, S., Song, Y., Rathnayake, L., Tumendelger, A., Satoh, H., Toyoda, S., Yoshida, N. and Okabe, S.
    Environmental Microbiology, 2014, 16(10), 3168-3180.
  18. The nitrogen cycle in cryoconites: naturally occurring nitrification-denitrification granules on a glacier
    Segawa, T., Ishii, S., Ohte, N., Akiyoshi, A., Yamada, A., Maruyama, F., Li, A., Hongoh, Y. and Takeuchi, N.
    Environmental Microbiology, 2014, 16(10), 3250-3262.
  19. Simple, rapid and effective preservation and reactivation of an anaerobic ammonium oxidizing bacterium "Candidatus Brocadia sinica"
    Ali, M., Oshiki, M. and Okabe, S.
    Water Research, 2014, 57, 215-222.
  20. Cultivation of planktonic anaerobic ammonium oxidation (anammox) bacteria by using membrane bioreactor
    Oshiki, M., Awata, T., Kindaichi, T., Satoh, H. and Okabe, S.
    Microbes and Environments, 2013, 28(4), 436-443.
  21. Source identification of nitrous oxide on autotrophic partial nitrification in a granular sludge reactor
    Rathnayake, L., Song, Y.-J., Tumendelger, A., Oshiki, M., Ishii, S., Satoh, H., Toyoda, S., Yoshida, N. and Okabe, S.
    Water Research, 2013, 47(19), 7078-7086.
  22. Nitrate-dependent ferrous iron oxidation by anaerobic ammonium oxidation (anammox) bacteria
    Oshiki, M., Ishii, S., Yoshida, K., Fujii, N., Ishiguro, M., Satoh, H. and Okabe, S.
    Applied and Environmental Microbiology, 2013, 79(13), 4087-4093.
  23. Physiological characterization of an anaerobic ammonium-oxidizing bacterium belonging to the "Candidatus Scalindua" group
    Awata, T., Oshiki, M., Kindaichi, T., Ozaki, N., Ohashi, A. and Okabe, S.
    Applied and Environmental Microbiology, 2013, 79(13), 4145-4148.
  24. Development and characterization of the partial nitrification aerobic granules in a sequencing batch airlift reactor
    Song, Y., Ishii, S., Rathnayake, L., Ito, T., Satoh, H. and Okabe, S.
    Bioresource Technology, 2013, 139, 285-291.
  25. Analyses of three dominant membrane proteins from anammox planctomycete Candidatus 'Brocadia sinica'
    Tojo, F., Itoh, Y., Okabe, S., and Morikawa, M.
    Journal of Environmental Biotechnology, 2011, 11(1-2), 77-81.
  26. N2O emission from a partial nitrification–anammox process and identification of a key biological process of N2O emission from anammox granules
    Okabe, S., Oshiki, M., Takahashi, Y., and Satoh, H.
    Water Research, 45(19), 6461-6470.
  27. Physiological characteristics of the anaerobic ammonium-oxidizing bacterium 'Candidatus Brocadia Sinica'
    Oshiki, M., Shimokawa, M., Fujii, N., Satoh, H., and Okabe, S.
    Microbiology, 2011, 157, 1706-1713.
  28. Development of long-term stable partial nitrification and subsequent anammox process
    Okabe, S., Oshiki, M., Takahashi, K., and Satoh, H.
    Bioresource Technology, 2011, 102(13), 6801-6807.
  29. Development of a simultaneous partial nitrification and anaerobic ammonia oxidation process in a single reactor
    Cho, S., Fujii, N., Lee, T., and Okabe, S.
    Bioresource Technology, 2011, 102(2), 652-659.
  30. Nitrogen removal performance and microbial community analysis of an anaerobic up-flow granular bed anammox reactor
    Cho, S., Takahashi, Y., Fujii, N., Yamada, Y., Satoh, H., and Okabe, S.
    Chemosphere, 2010, 78, 1129-1135.
  31. Layered structure of bacterial and archaeal communities and their in situ activities in anaerobic granules
    Satoh, H., Miura, Y., Tsushima, I., and Okabe, S.
    Applied and Environmental Microbiology, 2007, 73(22), 7300-7307.
  32. In Situ Activity and Spatial Organization of Anaerobic Ammonium-Oxidizing (Anammox) Bacteria in Biofilms
    Kindaichi, T., Tsushima, I., Ogasawara, Y., Shimokawa, M., Ozaki, N., Satoh, H., and Okabe, S.
    Applied and Environmental Microbiology, 2007, 73(15), 4931-4939.
  33. Development of a super high-rate ANAMMOX reactor and in situ analysis of biofilm structure and function
    Tsushima, I., Ogasawara, Y., Shimokawa, M., Kindaichi, T., and Okabe, S.
    Water Science and Technology, 2007, 55(8/9), 9-17.
  34. Development of High-Rate Anaerobic Ammonium-Oxidizing (ANAMMOX) Biofilm Reactors
    Tsushima, I., Ogasawara, Y., Shimokawa, M., Kindaichi, T., and Okabe, S.
    Water Research, 2007, 41(8), 1623-1634.