ARTICLE
ARTICLE
Prof. DAIRI
146. K. Ogata, R. Nakama, H. Kobayashi, T. Kawata, C. Maruyama, T. Tsunoda, T. Ujihara, Y. Hamano, Y. Ogasawara, T. Dairi
Substrate specificities of two ketosynthases in eukaryotic microalgal and prokaryotic marine bacterial DHA synthases
PNAS 112, e2424450122 (2025)
https://doi.org/10.1073/pnas.2424450122
145. T. Tsunoda, S. Furumura, H. Yamazaki, C. Maruyama, Y. Hamano, Y. Ogasawara, T. Dairi
Biosynthesis of lactacystin as a proteasome inhibitor
Commun. Chem. 8, 9 (2025)
https://doi.org/10.1038/s42004-025-01406-4
144. S. Umetsu, T. Tsunoda, H. Kiyanagi, Y. Inahashi, K. Nonaka, T. Dairi, Y. Ogasawara
Identification of a new oligomycin derivative as a specific inhibitor of the alternative peptidoglycan biosynthetic pathway
J. Antibiot. 77, 182-184 (2024)
https://doi.org/10.1038/s41429-023-00693-0
143. N. Shen, Y. Satoh, D. Koma, H. Ohashi, Y. Ogasawara, T. Dairi
Optimization of tyrosol-producing pathway with tyrosine decarboxylase and tyramine oxidase in high-tyrosine-producing Escherichia coli
J. Biosci. Bioeng. 137, 115 (2024).
https://doi.org/10.1016/j.jbiosc.2023.12.002
142. H. Kato, M. Sakuta, T. Tsunoda, Y. Nakashima, H. Morita, Y. Ogasawara, T. Dairi
Peptide Epimerase Responsible for D-Amino Acid Introduction in Poly-γ-glutamic Acid Biosynthesis
Biomacromolecules 25, 349 (2024).
https://doi.org/10.1021/acs.biomac.3c01000
141. Y. Nakashima, A. Kawakami, Y. Ogasawara, M. Maeki, M. Tokeshi, T. Dairi, H. Morita
Structure of lasso peptide epimerase MslH reveals metal-dependent acid/base catalytic mechanism
Nat. Commun. 14, 4752 (2023).
https://doi.org/10.1038/s41467-023-40232-x
140. W. Xiao, T. Tsunoda, C. Maruyama, Y. Hamano, Y. Ogasawara, T. Dairi
Peptide epimerase-dehydratase complex responsible for biosynthesis of the linaridin class ribosomal peptides
Biosci. Biotechnol. Biochem. 87, 1316 (2023).
https://doi.org/10.1093/bbb/zbad106
139. T. Dairi
Studies on biosynthetic enzymes leading to structural and functional diversity of microbial natural products
Biosci. Biotechnol. Biochem. 87, 797 (2023).
https://doi.org/10.1093/bbb/zbad064
138. YL. Wang, CY. Chang, NS. Hsu, IW. Lo, KH. Lin, CL. Chen, CF. Chang, ZC. Wang, Y. Ogasawara, T. Dairi, C. Maruyama, Y. Hamano, TL. Li
N-Formimidoylation/-iminoacetylation modification in aminoglycosides requires FAD-dependent and ligand-protein NOS bridge dual chemistry
Nat. Commun. 14, 2528 (2023).
https://doi.org/10.1038/s41467-023-38218-w
137. T. Hirasawa, Y. Shimoyamada, Y. Tachikawa, Y. Satoh, Y. Kawano, T. Dairi, I. Ohtsu
Ergothioneine production by Corynebacterium glutamicum harboring heterologous biosynthesis pathways
J. Biosci. Bioeng. 135, 25 (2023).
https://doi.org/10.1016/j.jbiosc.2022.10.002
136. Y. Takeuchi, K. Ushimaru, K. Kaneda, C. Maruyama, T. Ito, K. Yamanaka, Y. Ogasawara, H. Katano, Y. Kato, T. Dairi, Y. Hamano
First direct evidence for direct cell-membrane penetrations of polycationic homopoly(amino acid)s produced by bacteria.
Commun. Biol. 5, 1132 (2022).
https://doi.org/10.1038/s42003-022-04110-4
135. W. Xiao, Y. Satoh, Y. Ogasawara, T. Dairi.
Biosynthetic Gene Cluster of linaridin Peptides Contains Epimerase Gene
ChemBioChem 23, e202100705 (2022).
https://doi.org/10.1002/cbic.202100705
134. X. Li, R. Shimaya, T. Dairi, W-c. Chang, Y. Ogasawara.
Identification of Cyclopropane Formation in the Biosyntheses of Hormaomycins and Belactosins: Sequential Nitration and Cyclopropanation by Metalloenzymes.
Angew. Chem. Int. Ed. 61, e202113189 (2022).
https://doi.org/10.1002/anie.202113189
133. Y. Ogasawara, S. Umetsu, Y. Inahashi, K. Nonaka and T. Dairi.
Identification of pulvomycin as an inhibitor of the futalosine pathway.
J. Antibiot. 74, 825 (2021).
https://doi.org/10.1038/s41429-021-00465-8
132. Y. Ogasawara and T. Dairi.
Discovery of an alternative pathway of peptidoglycan biosynthesis: A new target for pathway specific inhibitors.
J. Ind. Microbiol. Biotechnol. 48, kuab038 (2021).
https://doi.org/10.1093/jimb/kuab038
131. Y-E Lee, Takeshi Kodama, N. N. Win, D-W Ki, N. N. Hoang, C. P. Wong, K. Z. W. Lae, H. Ngwe, T. Dairi, and H. Morita.
Flavonoids from Woodfordia fruticosa as potential SmltD inhibitors in the alternative biosynthetic pathway of peptidoglycan.
Bioorg. Med. Chem. Lett. 36, 127787 (2021).
https://doi.org/10.1016/j.bmcl.2021.127787
130. Z. Feng, Y. Ogasawara, and T. Dairi.
Identification of the Peptide Epimerase MslH Responsible for D-amino Acid Introduction at the C-terminus of Ribosomal Peptides.
Chem. Sci. 12, 2567-2574 (2021).
https://doi.org/10.1039/D0SC06308H
129. T. Kamide, S. Takusagawa, N. Tanaka, Y. Ogasawara, Y. Kawano, I. Ohtsu, Y. Satoh, and T. Dairi.
High production of ergothioneine in Escherichia coli using the sulfoxide synthase from Methylobacterium strains.
J. Agric. Food Chem. 68, 6390-6394 (2020).
https://doi.org/10.1021/acs.jafc.0c01846
128. S. Hayashi, Y. Satoh, Y. Ogasawara, and T. Dairi.
Recent advances in functional analysis of polyunsaturated fatty acid synthases.
Curr. Opin. Chem. Biol. 59, 30-36 (2020).
https://doi.org/10.1016/j.cbpa.2020.04.015
127. S. Hayashi, Y. Ogasawara, Y. Satoh, C. Maruyama, Y. Hamano, and T. Dairi.
Off-loading Mechanism of Products in Polyunsaturated Fatty Acid Synthases.
ACS Chem. Biol. 15, 651-656 (2020).
https://doi.org/10.1021/acschembio.0c00075
126. M. Naka, K. Ikeuchi, S. Hayashi, Y. Satoh, Y. Ogasawara, and T. Dairi.
Subtle control of carbon chain length in polyunsaturated fatty acid synthases.
ACS Chem. Biol. 14, 2553-2556 (2019).
https://doi.org/10.1021/acschembio.9b00803
125. Y. Ogasawara, Y. Shimizu, Y. Sato, T. Yoneda, Y. Inokuma and T. Dairi.
Identification of actinomycin D as a specific inhibitor of the alternative pathway of peptidoglycan biosynthesis.
J. Antibiot. 73, 125-127 (2020).
https://doi.org/10.1038/s41429-019-0252-2
124. Y. Ogasawara, Y. Nakagawa, C. Maruyama, Y. Hamano, and T. Dairi.
In vitro characterization of MitE and MitB: formation of N-acetylglucosaminyl-3-amino-5-hydroxybenzoyl-MmcB as a key intermediate in the biosynthesis of antitumor antibiotic mitomycins.
Bioorg. Med. Chem. Lett. 29, 2076-2078 (2019).
https://doi.org/10.1016/j.bmcl.2019.07.009
123. Y. Ogasawara, M. Shigematsu, S. Sato, H. Kato, and T. Dairi
Involvement of Peptide Epimerization in Poly-γ-glutamic Acid Biosynthesis.
Org. Lett. 21, 3972-3975 (2019).
https://doi.org/10.1021/acs.orglett.9b01121
122. R. Feng, Y. Satoh, H. Morita, Y. Ogasawara, and T. Dairi.
Amino Acid Residues Recognizing Isomeric Glutamate Substrates in UDP-N-acetylmuramic acid-L-alanine-glutamate Synthetases.
ACS Chem. Biol. 14, 975-978 (2019).
https://doi.org/10.1021/acschembio.9b00159
121. S. Hayashi, M. Naka, K. Ikeuchi, M. Otsuka, K. Kobayashi, Y. Satoh, Y. Ogasawara, C. Maruyama, Y. Hamano, T. Ujihara, and T. Dairi.
Control mechanism for carbon chain length in polyunsaturated fatty acid synthases.
Angew. Chem. Int. Ed. 58, 6605-6610 (2019).
https://dx.doi.org/10.1002/anie.201900771
120. N. Tanaka, Y. Kawano, Y. Satoh, T. Dairi, and I. Ohtsu.
Gram-scale fermentative production of ergothioneine driven by overproduction of cysteine in Escherichia coli.
Scientific Reports 9, 1895 (2019)
https://doi.org/10.1038/s41598-018-38382-w
119. S. Hayashi, Y. Satoh, Y. Ogasawara, C. Maruyama, Y. Hamano, T. Ujihara, and T. Dairi.
Control mechanism for cis-double bond formation by polyunsaturated fatty acid synthases.
Angew. Chem. Int. Ed. 58, 2326-2330 (2019).
http://dx.doi.org/10.1002/anie.201812623
118. Y. Ogasawara and T. Dairi.
Searching for potent and specific antibiotics against pathogenic Helicobacter and Campylobacter strains.
J. Ind. Microbiol. Biotechnol. 46, 409-414 (2019).
http://dx.doi.org/10.1007/s10295-018-2108-3
117. S. Takusagawa, Y. Satoh, I. Ohtsu, T. Dairi.
Ergothioneine production with Aspergillus oryzae.
Biosci. Biotechnol. Biochem. 83, 181-184 (2019).
http://dx.doi.org/10.1080/09168451.2018.1527210
116. S. Joshi, D. Fedoseyenko, N. Mahanta, H. Manion, S. Naseem, T. Dairi, and TP. Begley.
Novel enzymology in futalosine-dependent menaquinone biosynthesis.
Curr Opin Chem Biol. 47, 134-141 (2018).
http://dx.doi.org/10.1016/j.cbpa.2018.09.015
115. A. Tazawa, Y. Ye, T. Ozaki, C. Liu, Y. Ogasawara, T. Dairi, Y. Higuchi, N. Kato, K. Gomi, A. Minami, and H. Oikawa.
Total Biosynthesis of Brassicicenes: Identification of a Key Enzyme for Skeletal Diversification.
Org. Lett. 20, 6178–6182 (2018).
http://dx.doi.org/10.1021/acs.orglett.8b02654
114. Y. Shimizu, Y. Ogasawara, A. Matsumoto and T. Dairi.
Aplasmomycin and boromycin are specific inhibitors of the futalosine pathway.
J. Antibiot. 71, 968–970 (2018).
http://dx.doi.org/10.1038/s41429-018-0087-2
113. Z. Feng, Y. Ogasawara, S. Nomura and T. Dairi.
Biosynthetic Gene Cluster of a D‐Tryptophan‐Containing Lasso Peptide, MS‐271.
ChemBioChem 19, 2045-2048 (2018).
http://dx.doi.org/10.1002/cbic.201800315
112 T. Ozaki, S.S. Shinde, L. Gao, R. Okuizumi, C. Liu, Y. Ogasawara, X Lei, T. Dairi, A. Minami, H. Oikawa
Enzymatic formation of a skipped methyl-substituted octaprenyl side chain of longestin (KS-505a): Involvement of homo-IPP as a common extender unit.
Angew. Chem. Int. Ed. 57, 6629-6632 (2018).
https://doi.org/10.1002/anie.201802116
111 Y. Ogasawara and T. Dairi.
Peptide Epimerization Machineries Found in Microorganisms.
Front. Microbiol. 9:156 (2018).
https://doi.org/10.3389/fmicb.2018.00156
110 R. Osawa, T. Kamide, Y. Satoh, Y. Kawano, I. Ohtsu, T. Dairi.
Heterologous and high production of ergothioneine in Escherichia coli.
J. Agric. Food Chem. 66, 1191-1196 (2018).
https://doi.org/10.1021/acs.jafc.7b04924
109 H. Niikura, C. Maruyama, Y. Ogasawara, K. Shin-ya, T. Dairi, Y. Hamano.
Functional analysis of methyltransferases participating in streptothricin-related antibiotic biosynthesis.
J. Biosci. Bioeng. 125, 148-154 (2018).
https://doi.org/10.1016/j.jbiosc.2017.09.004
108 J. Taguchi, T. Ikeda, R. Takahashi, I. Sasaki, Y. Ogasawara, T. Dairi, N. Kato, Y. Yamamoto, J.W. Bode and H. Ito.
Synthesis of Acylborons by Ozonolysis of Alkenylboronates: Preparation of an Enantioenriched Amino Acid Acylboronate.
Angew. Chem. Int. Ed. 56, 13847-13851 (2017).
http://dx.doi.org/10.1002/anie.201707933
107 K. Takeda, K. Kemmoku, Y. Satoh, Y. Ogasawara, K. Shin-ya, and T. Dairi.
N-Phenylacetylation and Nonribosomal Peptide Synthetases with Substrate Promiscuity for Biosynthesis of Heptapeptide Variants, JBIR-78 and JBIR-95.
ACS Chem. Biol. 12, 1813-1819 (2017).
http://dx.doi.org/10.1021/acschembio.7b00314
106 Y. Ogasawara and T. Dairi.
Biosynthesis of Oligopeptides using ATP-grasp Enzymes.
Chem. Eur. J. 23, 10714–10724 (2017).
http://dx.doi.org/10.1002/chem.201700674
105 R. Feng, Y. Satoh, Y. Ogasawara, T. Yoshimura, and T. Dairi.
A Glycopeptidyl-Glutamate Epimerase for Bacterial Peptidoglycan Biosynthesis.
J. Am. Chem. Soc. 139, 4243-4245 (2017).
http://dx.doi.org/10.1021/jacs.7b01221
104 Y. Ogasawara, K. Kondo, A. Ikeda, R. Harada and T. Dairi.
Identification of tirandamycins as specific inhibitors of the futalosine pathway. J. Antibiot. 70, 798-800 (2017).
http://dx.doi.org/10.1038/ja.2017.22
103 J. Kawata, T. Naoe, Y. Ogasawara, and T. Dairi.
Biosynthesis of the Carbonylmethylene Structure Found in the Ketomemicin Class of Pseudotripeptides. Angew. Chem. Int. Ed. 56, 2026-2029 (2017).
http://dx.doi.org/10.1002/anie.201611005
102 S. Hayashi, Y. Satoh, T. Ujihara, Y. Takata, T. Dairi.
Enhanced production of polyunsaturated fatty acids by enzyme engineering of tandem acyl carrier proteins. Sci. Rep. 6, 35441 (2016)
http://www.nature.com/articles/srep35441
101 C. Liu, A. Minami, T. Dairi, K. Gomi, B. Scott, and H. Oikawa. Biosynthesis of Shearinine: Diversification of a Tandem Prenyl Moiety of Fungal Indole Diterpenes. Org. Lett. 18, 5026-5029 (2016)
http://dx.doi.org/10.1021/acs.orglett.6b02482
100 Y. Ogasawara, M. Fujimori, J. Kawata, and T. Dairi. Characterization of three amidinotransferases involved in the biosynthesis of ketomemicins. Bioorg. Med. Chem. Lett., 26, 3662-3664 (2016)
http://dx.doi.org/10.1016/j.bmcl.2016.05.090
99 Y. Ogasawara, J. Kawata, M. Noike, Y. Satoh, K. Furihata, and T. Dairi. Exploring peptide ligase orthologs in actinobacteria—discovery of pseudopeptide natural products, ketomemicins. ACS Chem. Biol., 11, 1686-1692 (2016)
http://dx.doi.org/10.1021/acschembio.6b00046
98 K. Tajima, K. Iwamoto, Y. Satoh, R. Sakai, T. Satoh, T. Dairi. Advanced functionalization of polyhydroxyalkanoate via the UV-initiated thiol-ene click reaction. Appl. Microbiol. Biotechnol. 100, 4375–4383 (2016).
http://dx.doi.org/10.1007/s00253-015-7252-3
97 Y. Ogasawara, K. Ooya, M. Fujimori, M Noike, T. Dairi. Structure and activity relationships of the anti-Mycobacterium antibiotics resorcinomycin and pheganomycin. J. Antibiot., 69, 119-120 (2016)
http://dx.doi.org/10.1038/ja.2015.88
96 K. Ooya, Y. Ogasawara, M. Noike, T. Dairi.
Identification and analysis of the resorcinomycin biosynthetic gene cluster. Biosci. Biotechnol. Biochem., 79, 1833-1837 (2015)
http://dx.doi.org/10.1080/09168451.2015.1050992
95 S. Nakajima, Y. Satoh, K. Yanashima, T. Matsui, T. Dairi. Ergothioneine protects Streptomyces coelicolor A3(2) from oxidative stresses. J Biosci Bioeng., 120, 294-298 (2015).
http://dx.doi.org/10.1016/j.jbiosc.2015.01.013
94 Noike M, Matsui T, Ooya K, Sasaki I, Ohtaki S, Hamano Y, Maruyama C, Ishikawa J, Satoh Y, Ito H, Morita H, Dairi T., A peptide ligase and the ribosome cooperate to synthesize the peptide pheganomycin. Nat. Chem. Biol., 11, 71-76 (2015).
http://dx.doi.org/10.1038/nchembio.1697
93 Tagami K, Minami A, Fujii R, Liu C, Tanaka M, Gomi K, Dairi T, Oikawa H. Rapid reconstitution of biosynthetic machinery for fungal metabolites in Aspergillus oryzae: total biosynthesis of aflatrem., Chembiochem., 15(14), 2076-2080 (2014).
doi: 10.1002/cbic.201402195.
92 C. Liu, M. Noike, A. Minami, H. Oikawa, and T. Dairi. A Fungal Prenyltransferase Catalyzes the Regular Di-prenylation at Positions 20 and 21 of Paxilline. Biosci. Biotech. Biochem., 78(3), 448-454 (2014)
91 C. Liu, M. Noike, A. Minami, H. Oikawa, T. Dairi. Functional analysis of a prenyltransferase gene (paxD) in the paxilline biosynthetic gene cluster, Appl. Microbiol. Biotechnol., 98(1), 199-206 (2014)
DOI:10.1007/s00253-013-4834-9.
90 N. Mahanta, D. Fedoseyenko, T. Dairi, TP. Begley. Menaquinone biosynthesis: formation of aminofutalosine requires a unique radical SAM enzyme. J. Am. Chem. Soc., 135, 15318-15321 (2013).
89 Y. Satoh, M. Kuratsu, D. Kobayashi, T. Dairi. New gene responsible for para-aminobenzoate biosynthesis. J. Biosci. Bioeng., (2013),
88 C. Liu, A. Minami, M. Noike, H. Toshima, H. Oikawa, and T. Dairi. Regiospecificities and prenylation mode specificities of the fungal indole diterpene prenyltransferases, AtmD and PaxD. Appl. Environ. Microbiol., 79, 7298-7304 (2013).
87 LE. Cooper, D. Fedoseyenko, SH. Abdelwahed, SH. Kim, T. Dairi, TP. Begley, In vitro reconstitution of the radical SAM enzyme MqnC involved in the biosynthesis of futalosine-derived menaquinone. Biochemistry, 52, 4592-4594 (2013).
86 K. Tagami, C. Liu, A. Minami, M. Noike, T. Isaka, S. Fueki, Y. Shichijo, H. Toshima, K. Gomi, T. Dairi, H. Oikawa. Reconstitution of biosynthetic machinery for indole-diterpene paxilline in Aspergillus oryzae, J. Am. Chem. Soc. 135(4), 1260-1263 (2013).
85 N. Sunagawa, T. Fujiwara, T. Yoda, S. Kawano, Y. Satoh, M. Yao, K. Tajima, T. Dairi. Cellulose complementing factor (Ccp) is a new member of the cellulose synthase complex (terminal complex) in Acetobacter xylinum, J.
Biosci. Bioeng., 115, 607-612 (2013).
84 T. Dairi, Menaquinone biosyntheses in microorganisms, Methods in Enzymol. 515, 107-122 (2012).
83 N. Sunagawa, K. Tajima, M. Hosoda, S. Kawano, Y. Satoh, M. Yao, T. Dairi,
Cellulose production by Enterobacter sp. CJF-002 and identification of genes
for cellulose biosynthesis, Cellulose, 10.1007/s10570-012-9777-2 (2012).
82 M. Noike, Y. Ono, Y. Araki, R. Tanio, Y. Higuchi, H. Nitta, Y. Hamano, T.
Toyomasu, T. Sassa, N. Kato, and T. Dairi, Molecular breeding of a fungus
producing a precursor diterpene suitable for semi-synthesis by dissection of
the biosynthetic machinery. , PLoS ONE , 7: e42090.
doi:10.1371/journal.pone.0042090(2012).
81 M. Noike, C. Liu, Y. Ono, Y. Hamano, T. Toyomasu, T. Sassa, N. Kato, and T.
Dairi, An Enzyme Catalyzing O-Prenylation of the Glucose Moiety of
Fusicoccin A, a Diterpene Glucoside Produced by Fungus, ChemBioChem., 13,
566-573 (2012).
80 A. Yajima, S. Kouno, M. Mogi, R. Katsuta, T. Dairi, H. Seto, and T. Nukada, Synthesis of (±)-Cyclic De-hypoxanthine Futalosine, the Biosynthetic Intermediate in an Alternative Biosynthetic Pathway for Menaquinones. Tetrahedron Lett., 52, 4934-4937 (2011).
79 Y. Satoh, K. Tajima, S. Nakamoto, H. Xuerong, T. Matsushima, T. Ohshima, S. Kawano, T. Erata, T. Dairi, and M. Munekata, Isolation of a Thermotolerant Bacterium Producing Medium-chain-length Polyhydroxyalkanoate, J. Appl. Microbiol. (2011).
78 X. Han, Y. Satoh, T. Satoh, T. Kakuchi, K. Matsumoto, S. Taguchi, T. Dairi, M. Munekata, and K. Tajima, Enzymatic Polymerization of 2-Hydroxyalkanoates: Copolymerization of 2-Hydroxybutyrate by Wild-type Class I PHA Synthase. Appl. Microbiol. Biotech. (2011).
77 S. Takahashi, A. Toyoda, Y. Sekiyama, H. Takagi, T. Nogawa, M. Uramoto, R. Suzuki, H. Koshino, T. Kumano, S. Panthee, T. Dairi, J. Ishikawa, H. Ikeda, Y. Sakaki, and H. Osada, Reveromycin A Biosynthesis Uses RevG and RevJ for Stereospecific Spiroacetal Formation, Nat. Chem. Biol. 7, 461-468 (2011).
76 T. Dairi, T. Kuzuyama, M. Nishiyama, and Fujii I.Convergent Strategies in Biosynthesis. Nat. Prod. Rep., 28 (6), 1054 - 1086 (2011)
75 Y. Ono, A. Minami, M. Noike, Y. Higuchi, T. Toyomasu, T. Sassa,N. Kato, and T. Dairi, Dioxygenases, Key Enzymes to Determine the Aglycon Structures of Fusicoccin and Brassicicene, Diterpene Compounds Produced by Fungi. J. Am. Chem. Soc., 133, 2548-55 (2011).
74 C. Arakawa, K. Furihata, T. Hiratsuka, N. Itoh, H. Seto, and T. Dairi, Diversity of the Early Step of the Futalosine Pathway. Antimicrob Agents Chemother. 55, 913-916 (2011).
73 R. Tanaka, T. Kunisada, N. Kushida, K. Yamada, S. Ikeda, M. Noike, Y. Ono, N. Itoh, H. Takami, H. Seto, and T. Dairi, Branched Fatty Acids Inhibit the Biosynthesis of Menaquinone in Helicobacter pylori. J. Antibiot., 64, 151-153 (2011).
72 M. Kuratsu, Y. Hamano, and T. Dairi, Analysis of the Lactobacillus Metabolic Pathway. Appl. Environ. Microbiol., 76, 7299-7301 (2010).
Assist. Prof. SATOH
49. N. Shen, Y. Satoh, D. Koma, H. Ohashi, Y. Ogasawara, T. Dairi
Optimization of tyrosol-producing pathway with tyrosine decarboxylase and tyramine oxidase in high-tyrosine-producing Escherichia coli
J. Biosci. Bioeng. 137, 115 (2024).
https://doi.org/10.1016/j.jbiosc.2023.12.002
48. T. Hirasawa, Y. Shimoyamada, Y. Tachikawa, Y. Satoh, Y. Kawano, T. Dairi, I. Ohtsu
Ergothioneine production by Corynebacterium glutamicum harboring heterologous biosynthesis pathways
J. Biosci. Bioeng. in press
https://doi.org/10.1016/j.jbiosc.2022.10.002
47. W. Xiao, Y. Satoh, Y. Ogasawara, T. Dairi.
Biosynthetic Gene Cluster of linaridin Peptides Contains Epimerase Gene
ChemBioChem 23, e202100705 (2022).
https://doi.org/10.1002/cbic.202100705
46. T. Kamide, S. Takusagawa, N. Tanaka, Y. Ogasawara, Y. Kawano, I. Ohtsu, Y. Satoh, and T. Dairi.
High production of ergothioneine in Escherichia coli using the sulfoxide synthase from Methylobacterium strains.
J. Agric. Food Chem. 68, 6390-6394 (2020).
https://doi.org/10.1021/acs.jafc.0c01846
45. S. Hayashi, Y. Satoh, Y. Ogasawara, and T. Dairi.
Recent advances in functional analysis of polyunsaturated fatty acid synthases.
Curr. Opin. Chem. Biol. 59, 30-36 (2020).
https://doi.org/10.1016/j.cbpa.2020.04.015
44. S. Hayashi, Y. Ogasawara, Y. Satoh, C. Maruyama, Y. Hamano, and T. Dairi.
Off-loading Mechanism of Products in Polyunsaturated Fatty Acid Synthases.
ACS Chem. Biol. 15, 651-656 (2020).
https://doi.org/10.1021/acschembio.0c00075
43. M. Naka, K. Ikeuchi, S. Hayashi, Y. Satoh, Y. Ogasawara, and T. Dairi.
Subtle control of carbon chain length in polyunsaturated fatty acid synthases.
ACS Chem. Biol. 14, 2553-2556 (2019).
https://doi.org/10.1021/acschembio.9b00803
42. R. Feng, Y. Satoh, H. Morita, Y. Ogasawara, and T. Dairi.
Amino Acid Residues Recognizing Isomeric Glutamate Substrates in UDP-N-acetylmuramic acid-L-alanine-glutamate Synthetases.
ACS Chem. Biol. 14, 975-978 (2019).
https://doi.org/10.1021/acschembio.9b00159
41. S. Hayashi, M. Naka, K. Ikeuchi, M. Otsuka, K. Kobayashi, Y. Satoh, Y. Ogasawara, C. Maruyama, Y. Hamano, T. Ujihara, and T. Dairi.
Control mechanism for carbon chain length in polyunsaturated fatty acid synthases.
Angew. Chem. Int. Ed. 58, 6605-6610 (2019).
http://dx.doi.org/10.1002/anie.201900771
40. N. Tanaka, Y. Kawano, Y. Satoh, T. Dairi, and I. Ohtsu.
Gram-scale fermentative production of ergothioneine driven by overproduction of cysteine in Escherichia coli.
Scientific Reports 9, 1895 (2019)
https://doi.org/10.1038/s41598-018-38382-w
39. S. Hayashi, Y. Satoh, Y. Ogasawara, C. Maruyama, Y. Hamano, T. Ujihara, and T. Dairi.
Control mechanism for cis-double bond formation by polyunsaturated fatty acid synthases.
Angew. Chem. Int. Ed. 58, 2326-2330 (2019).
http://dx.doi.org/10.1002/anie.201812623
38 S. Takusagawa, Y. Satoh, I. Ohtsu, T. Dairi.
Ergothioneine production with Aspergillus oryzae.
Biosci. Biotechnol. Biochem. 83, 181-184 (2019).
http://dx.doi.org/10.1080/09168451.2018.1527210
37 R. Osawa, T. Kamide, Y. Satoh, Y. Kawano, I. Ohtsu, Tohru Dairi.
Heterologous and high production of ergothioneine in Escherichia coli.
J. Agric. Food Chem. 66, 1191-1196 (2018).
https://doi.org/10.1021/acs.jafc.7b04924
36 K. Takeda, K. Kemmoku, Y. Satoh, Y. Ogasawara, K. Shin-ya, and T Dairi.
N-Phenylacetylation and Nonribosomal Peptide Synthetases with Substrate Promiscuity for Biosynthesis of Heptapeptide Variants, JBIR-78 and JBIR-95.
ACS Chem. Biol. 12, 1813-1819 (2017)
http://dx.doi.org/10.1021/acschembio.7b00314
35 R. Feng, Y. Satoh, Y. Ogasawara, T. Yoshimura, and T. Dairi.
A Glycopeptidyl-Glutamate Epimerase for Bacterial Peptidoglycan Biosynthesis. J. Am. Chem. Soc. 139, 4243-4245 (2017).
http://dx.doi.org/10.1021/jacs.7b01221
34 S. Hayashi, Y. Satoh, T. Ujihara, Y. Takata, T. Dairi.
Enhanced production of polyunsaturated fatty acids by enzyme engineering of tandem acyl carrier proteins. Sci. Rep. 6, 35441 (2016)
http://www.nature.com/articles/srep35441
33 Ogasawara Y, Kawata J, Noike M, Satoh Y, Furihata K, and Dairi T. Exploring peptide ligase orthologs in actinobacteria—discovery of pseudopeptide natural products, ketomemicins. ACS Chem. Biol., 11, 1686-1692 (2016)
http://dx.doi.org/10.1021/acschembio.6b00046
32 Tajima K, Iwamoto K, Satoh Y, Sakai R, Satoh T, Dairi T. Advanced functionalization of polyhydroxyalkanoate via
the UV-initiated thiol-ene click reaction. Appl. Microbiol. Biotechnol. 100, 4375-4383 (2016).
http://dx.doi.org/10.1007/s00253-015-7252-3
31 Nakajima S, Satoh Y, Yanashima K, Matsui T, Dairi T. Ergothioneine protects Streptomyces coelicolor A3(2) from oxidative stresses. J Biosci Bioeng., 120, 294-298 (2015).
http://dx.doi.org/10.1016/j.jbiosc.2015.01.013
30 Noike M, Matsui T, Ooya K, Sasaki I, Ohtaki S, Hamano Y, Maruyama C, Ishikawa J, Satoh Y, Ito H, Morita H, Dairi T., A peptide ligase and the ribosome cooperate to synthesize the peptide pheganomycin. Nat. Chem. Biol., 11, 71-76 (2014).
http://dx.doi.org/10.1038/nchembio.1697
29 Han X, Satoh Y, Kuriki Y, Seino T, Fujita S, Suda T, Kobayashi T, Tajima K., Polyhydroxyalkanoate production by a novel bacterium Massilia sp. UMI-21 isolated from seaweed, and molecular cloning of its polyhydroxyalkanoate synthase gene. J. Biosci. Bioeng., 118, 514–519 (2014)
28 Satoh, Y., Kuratsu, M., Kobayashi, D., Dairi, T. New gene responsible for para-aminobenzoate biosynthesis. J. Biosci. Bioeng., 117, 178-183 (2014)
27 Sunagawa N, Fujiwara T., Yoda T., Kawano S, Satoh Y, Yao M, Tajima K, Dairi T. Cellulose complementing factor (Ccp) is a new member of the cellulose synthase complex (terminal complex) in Acetobacter xylinum, J. Biosci. Bioeng. 115, 607-612 (2013)
26 Tajima K, Han X, Satoh Y, Ishii A, Araki Y, Munekata M, Taguchi S., In vitro synthesis of polyhydroxyalkanoate (PHA) incorporating lactate (LA) with a block sequence by using a newly engineered thermostable PHA synthase from Pseudomonas sp. SG4502 with acquired LA-polymerizing activity. Appl. Microbiol. Biotechnol. 94, 365-376 (2012).
25 N. Sunagawa, K. Tajima, M. Hosoda, S. Kawano, Y. Satoh, M. Yao, T. Dairi,
Cellulose production by Enterobacter sp. CJF-002 and identification of genes
for cellulose biosynthesis, Cellulose, 10.1007/s10570-012-9777-2 (2012).
24 Satoh Y, Tajima K, Munekata M, Keasling JD, Lee TS, Engineering of
l-tyrosine oxidation in Escherichia coli and microbial production of hydroxytyrosol, Metab. Eng. 2012 Aug 29.
23 Satoh Y, Tajima K, Munekata M, Keasling JD, Lee TS, Engineering of a tyrosol-producing pathway, utilizing simple sugar and the central metabolic tyrosine, in Escherichia coli, J Agric Food Chem, 60, 979-984 (2012).
22 Y. Satoh*, K. Tajima, S. Nakamoto, H. Xuerong, T. Matsushima, T. Ohshima, S. Kawano, T. Erata, T. Dairi*, and M. Munekata, Isolation of a Thermotolerant Bacterium Producing Medium-chain-length Polyhydroxyalkanoate, J. Appl. Microbiol. (2011).
21 X. Han†, Y. Satoh†, T. Satoh, T. Kakuchi, K. Matsumoto, S. Taguchi, T. Dairi, M. Munekata, and K. Tajima, Enzymatic Polymerization of 2-Hydroxyalkanoates: Copolymerization of 2-Hydroxybutyrate by Wild-type Class I PHA Synthase. Appl. Microbiol. Biotech. (2011).
20 J. Agus, P. Kahar, M. Hyakutake, S. Tomizawa, H. Abe, T. Tsuge, Y. Satoh, K. Tajima, Unusual change in molecular weight of polyhydroxyalkanoate (PHA) during cultivation of PHA-accumulating Escherichia coli. Polym. Deg. Stab. 95, 2250-2254 (2010).
19 SQ Hu, Y-G Gao, K. Tajima, N. Sunagawa, Y. Zhou, S. Kawano, T. Fujiwara, T. Yoda, D. Shimura, Y. Satoh, M. Munekata, and M. Yao, Structure of bacterial cellulosesynthase subunit D octamer with four inner passageways., Proc. Natl. Acad. Aci. U. S. A., 107(42), 17957-17961 (2010).
18 X. Han X, Y. Satoh, K. Tajima K, T. Matsushima, and M. Munekata, Chemo-enzymatic synthesis of polyhydroxyalkanoate by an improved two-phase reaction system (TPRS)., J. Biosci. Bioeng. 108(6): 517-523 (2009).
17 K. Matsumoto, F. Shozui, Y. Satoh, K. Tajima, M. Munekata, and S. Taguchi, Kinetic Analysis of Engineered Polyhydroxyalkanoate Synthases with Broad Substrate Specificity, Polym. J. 41(3): 237-240 (2009).
16 K. Tajima, Y. Satoh, T. Satoh, R. Itoh, X. Han, S. Taguchi, T. Kakuchi, and M. Munekata, Chemo-enzymatic synthesis of poly(lactate-co-(3-hydroxybutyrate)) by a lactate-polymerizing enzyme., Macromolecules 42(6), 1985-1989 (2009).
15 S. Taguchi, M. Yamada, K. Matsumoto, K. Tajima, Y. Satoh, M. Munekata, K. Ohno, K. Kohda, T. Shimamura, H. Kambe, S. Obata, A microbial factory for lactate-based polyesters using a lactate-polymerizing enzyme., Proc. Natl. Acad. Aci. U. S. A., 105(45), 17323-17327 (2008).
14 S. Kawano, K. Tajima, H. Kono, Y. Numata, H. Yamashita, Y. Satoh, M. Munekata, Regulation of endoglucanase gene (cmcax) expression in Acetobacter xylinum. J. Biosci. Bioeng. 106(1), 88-94 (2008).
13 SQ Hu, Y-G Gao, K. Tajima, M. Yao, T. Yoda, D. Shimura, Y. Satoh, S. Kawano, I. Tanaka, M. Munekata, Purification, crystallization and preliminary X-ray studies of AxCesD required for efficient cellulose biosynthesis in Acetobacter xylinum. Protein Pept. Lett. 15(1), 115-117 (2008).
12 N. Nagai, K. Mori, Y. Satoh, N. Takahashi, S. Yunoki, K. Tajima, M. Munekata, In vitro growth and differentiated activities of human periodontal ligament fibroblasts cultured on salmon collagen gel., J Biomed Mater Res A. 82A(2), 395-402 (2007).
11 N. Nagai, T. Anzawa, Y. Satoh, T. Suzuki, K. Tajima, M. Munekata, Activities of MC3T3-E1 cells cultured on gamma-irradiated salmon atelocollagen scaffold., J. Biosci. Bioeng. 101(6): 511-514, (2006).
10 Y. Yasutake, S. Kawano, K. Tajima, M. Yao, Y. Satoh, M. Munekata, I. Tanaka, Structural characterization of the Acetobacter xylinum endo-beta-1,4-glucanase CMCax required for cellulose biosynthesis., Proteins 64(4), 1069-1077 (2006).
9 Y. Satoh*, F. Murakami, K. Tajima, M. Munekata, Enzymatic synthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) with CoA recycling using polyhydroxyalkanoate synthase and acyl-CoA synthetase. J. Biosci. Bioeng. 99(5), 508-511(2005).
8 N. Nagai, S. Yunoki, Y. Satoh, K. Tajima, M. Munekata, A method of cell-sheet preparation using collagenase digestion of salmon atelocollagen fibrillar gel. J. Biosci. Bioeng. 98(6), 493-496 (2004) .
7 K. Tajima, M. Kamachi, H. Tannai, Y. Satoh, M. Munekata, and R.W. Lenz, Chemoenzymatic Synthesis of Poly(3-hydroxybutyrate) in a Water-Organic Solvent Two-Phase System., Macromolecules 37(12), 4544-4546 (2004).
6 K. Tajima, H. Tannai, Y. Satoh, and M. Munekata, Synthesis of Poly(3-hydroxybutyrate) by Immobilized Poly(3-hydroxybutyrate) Synthase. Polym. J. 35(4), 335-341 (2003).
5 Y. Satoh*, K. Tajima, H. Tannai, M. Munekata, Enzyme-catalyzed poly(3-hydroxybutyrate) synthesis from acetate with CoA recycling and NADPH regeneration in Vitro., J. Biosci. Bioeng. 95(4), 335-341 (2003).
4 K. Tajima, T. Igari, D. Nishimura, M. Nakamura, Y. Satoh, and M. Munekata, Isolation and characterization of Bacillus sp. INT005 accumulationg plyhydroxyalkanoate (PHA) from Gas Field Soil., J. Biosci. Bioeng. 95(1), 77-81(2003).
3 Y. Satoh*, N. Minamoto, K. Tajima, and M. Munekata, Polyhydroxyalkanoate synthase from Bacillus sp. INT005 is composed of PhaC and PhaR., J. Biosci. Bioeng. 94(4), 343-350 (2002).
2 A. Kameda, T. Shiba, Y. Kawazoe, Y. Satoh, M. Munekata, K. Ishige, T. Noguchi, A novel ATP regeneration system using polyphosphate-AMP phosphotransferase and polyphosphate kinase. J. Biosci. Bioeng., 91(6), 557-563 (2001)
1 T. Koga, H. Takewaki, H. Matsuyama, Y. Satoh, Contracted Gaussian-type basis functions revisited. III. Atoms K through Kr. Theor. Chemi. Acc. 102, 105-111 (1999)
Assoc. Prof. Ogasawara
57. Kaito Ogata, Riku Nakama, Hiyu Kobayashi, Tomoya Kawata, Chitose Maruyama, Takeshi Tsunoda, Tetsuro Ujihara, Yoshimitsu Hamano, Yasushi Ogasawara, Tohru Dairi
Substrate specificities of two ketosynthases in eukaryotic microalgal and prokaryotic marine bacterial DHA synthases
PNAS 2025, 112, e2424450122
https://doi.org/10.1073/pnas.2424450122
56. Yu-Cong Zheng, Xiaojun Li, Lide Cha, Jared C. Paris, Charalambos Michael, Richiro Ushimaru, Yasushi Ogasawara, Ikuro Abe, Yisong Guo, Wei-chen Chang
Comparison of a Nonheme Iron Cyclopropanase with a Homologous Hydroxylase Reveals Mechanistic Features Associated with Distinct Reaction Outcomes
J. Am. Chem. Soc. in press.
https://doi.org/10.1021/jacs.4c17741
55. Takeshi Tsunoda, Shunkichi Furumura, Haruka Yamazaki, Chitose Maruyama, Yoshimitsu Hamano, Yasushi Ogasawara, Tohru Dairi
Biosynthesis of lactacystin as a proteasome inhibitor
Commun. Chem. 2025, 8, 9.
https://doi.org/10.1038/s42004-025-01406-4
54. Shuhei Umetsu, Takeshi Tsunoda, Haruka Kiyanagi, Yuki Inahashi, Kenichi Nonaka, Tohru Dairi, Yasushi Ogasawara
Identification of a new oligomycin derivative as a specific inhibitor of the alternative peptidoglycan biosynthetic pathway
J. Antibiot. 2024, 77, 182.
https://doi.org/10.1038/s41429-023-00693-0
53. Ning Shen, Yasuharu Satoh, Daisuke Koma, Hiroyuki Ohashi, Yasushi Ogasawara, Tohru Dairi
Optimization of tyrosol-producing pathway with tyrosine decarboxylase and tyramine oxidase in high-tyrosine-producing Escherichia coli
J. Biosci. Bioeng. 2024, 137, 115.
https://doi.org/10.1016/j.jbiosc.2023.12.002
52. Hinata Kato, Moeka Sakuta, Takeshi Tsunoda, Yu Nakashima, Hiroyuki Morita, Yasushi Ogasawara, Tohru Dairi
Peptide Epimerase Responsible for D-Amino Acid Introduction in Poly-γ-glutamic Acid Biosynthesis
Biomacromolecules 2024, 25, 349.
https://doi.org/10.1021/acs.biomac.3c01000
51. Yu Nakashima, Atsushi Kawakami, Yasushi Ogasawara, Masatoshi Maeki, Manabu Tokeshi, Tohru Dairi, Hiroyuki Morita.
Structure of lasso peptide epimerase MslH reveals metal-dependent acid/base catalytic mechanism.
Nat. Commun. 2023, 14, 4752.
https://doi.org/10.1038/s41467-023-40232-x
50. Wanlu Xiao, Takeshi Tsunoda, Chitose Maruyama, Yoshimitsu Hamano, Yasushi Ogasawara, Tohru Dairi.
Peptide epimerase-dehydratase complex responsible for biosynthesis of the linaridin class ribosomal peptides.
Biosci. Biotechnol. Biochem. 2023, 87, 1316.
https://doi.org/10.1093/bbb/zbad106
49. Yung-Lin Wang, Chin-Yuan Chang, Ning-Shian Hsu, I-Wen Lo,
Kuan-Hung Lin, Chun-Liang Chen, Chi-Fon Chang, Zhe-Chong Wang,
Yasushi Ogasawara, Tohru Dairi, Chitose Maruyama, Yoshimitsu Hamano, Tsung-Lin Li.
N-Formimidoylation/-iminoacetylation modification in aminoglycosides requires FAD-dependent and ligand-protein NOS bridge dual chemistry.
Nat. Commun. 2023, 14, 2528.
https://doi.org/10.1038/s41467-023-38218-w
48. Yamato Takeuchi, Kazunori Ushimaru, Kohei Kaneda, Chitose Maruyama, Takashi Ito, Kazuya Yamanaka, Yasushi Ogasawara, Hajime Katano, Yasuo Kato, Tohru Dairi, Yoshimitsu Hamano.
First direct evidence for direct cell-membrane penetrations of polycationic homopoly(amino acid)s produced by bacteria.
Commun. Biol. 2022, 5, 1132.
https://doi.org/10.1038/s42003-022-04110-4
47. Wanlu Xiao, Yasuharu Satoh, Yasushi Ogasawara, Tohru Dairi.
Biosynthetic Gene Cluster of linaridin Peptides Contains Epimerase Gene.
ChemBioChem 2022, 23, e202100705.
https://doi.org/10.1002/cbic.202100705
46. Xiaojun Li, Ryo Shimaya, Tohru Dairi, Wei-chen Chang, and Yasushi Ogasawara.
Identification of Cyclopropane Formation in the Biosyntheses of Hormaomycins and Belactosins: Sequential Nitration and Cyclopropanation by Metalloenzymes.
Angew. Chem. Int. Ed. 2022, 61, e202113189.
https://doi.org/10.1002/anie.202113189
45. Yasushi Ogasawara, Shuhei Umetsu, Yuki Inahashi, Kenichi Nonaka and Tohru Dairi.
Identification of pulvomycin as an inhibitor of the futalosine pathway.
J. Antibiot. 2021,74, 825-9.
https://doi.org/10.1038/s41429-021-00465-8
44. Yasushi Ogasawara and Tohru Dairi.
Discovery of an alternative pathway of peptidoglycan biosynthesis: A new target for pathway specific inhibitors.
J. Ind. Microbiol. Biotechnol. 2021, 48, kuab038.
https://doi.org/10.1093/jimb/kuab038
43. Zhi Feng, Yasushi Ogasawara, and Tohru Dairi.
Identification of the Peptide Epimerase MslH Responsible for D-amino Acid Introduction at the C-terminus of Ribosomal Peptides.
Chem. Sci. 2021, 12, 2567-74.
https://doi.org/10.1039/D0SC06308H
42. Tomoyuki Kamide, Shun Takusagawa, Naoyuki Tanaka, Yasushi Ogasawara, Yusuke Kawano, Iwao Ohtsu, Yasuharu Satoh, and Tohru Dairi.
High production of ergothioneine in Escherichia coli using the sulfoxide synthase from Methylobacterium strains.
J. Agric. Food Chem. 2020, 68, 6390–4.
https://doi.org/10.1021/acs.jafc.0c01846
41. Shohei Hayashi, Yasuharu Satoh, Yasushi Ogasawara, and Tohru Dairi.
Recent advances in functional analysis of polyunsaturated fatty acid synthases.
Curr. Opin. Chem. Biol. 2020, 59, 30-6.
https://doi.org/10.1016/j.cbpa.2020.04.015
40. Daan Ren, Mark W. Ruszczycky, Yeonjin Ko, Shao-An Wang, Yasushi Ogasawara, Minje Kim, and Hung-wen Liu.
Characterization of the coformycin biosynthetic gene cluster in Streptomyces kaniharaensis
PNAS 2020, 117, 10265-70.
https://doi.org/10.1073/pnas.2000111117
39. Shohei Hayashi, Yasushi Ogasawara, Yasuharu Satoh, Chitose Maruyama, Yoshimitsu Hamano, and Tohru Dairi.
Off-loading Mechanism of Products in Polyunsaturated Fatty Acid Synthases.
ACS Chem. Biol. 2020, 15, 651-6.
https://doi.org/10.1021/acschembio.0c00075
38. Mai Naka, Kenshin Ikeuchi, Shohei Hayashi, Yasuharu Satoh, Yasushi Ogasawara, Tohru Dairi.
Subtle control of carbon chain length in polyunsaturated fatty acid synthases.
ACS Chem. Biol. 2019, 14, 2553-6.
https://doi.org/10.1021/acschembio.9b00803
37. Yasushi Ogasawara, Yohei Shimizu, Yohei Sato, Tomoki Yoneda, Yasuhide Inokuma, and Tohru Dairi.
Identification of actinomycin D as a specific inhibitor of the alternative pathway of peptidoglycan biosynthesis.
J. Antibiot. 2020, 73, 125-7.
https://doi.org/10.1038/s41429-019-0252-2
36. Daan Ren, Shao-An Wang. Yeonjin Ko, Yujie Geng, Yasushi Ogasawara, and Hung-wen Liu.
Identification of the C‐Glycoside Synthases during Biosynthesis of the Pyrazole‐C‐Nucleosides Formycin and Pyrazofurin
Angew. Chem. Int. Ed. 2019, 58, 16512-6.
https://doi.org/10.1002/anie.201910356
35. Yasushi Ogasawara, Yo Nakagawa, Chitose Maruyama, Yoshimitsu Hamano, and Tohru Dairi.
In vitro characterization of MitE and MitB: formation of N-acetylglucosaminyl-3-amino-5-hydroxybenzoyl-MmcB as a key intermediate in the biosynthesis of antitumor antibiotic mitomycins.
Bioorg. Med. Chem. Lett. 2019, 29, 2076-8.
https://doi.org/10.1016/j.bmcl.2019.07.009
34. Anthony J Romo, Taro Shiraishi, Hideo Ikeuchi, Geng-Min Lin, Yujie Geng, Yu-Hsuan Lee, Priscilla H. Liem, Tianlu Ma, Yasushi Ogasawara, Kazuo Shin-ya, Makoto Nishiyama, Tomohisa Kuzuyama, and Hung-wen Liu.
The Amipurimycin and Miharamycin Biosynthetic Gene Clusters: Unraveling the Origins of 2-Aminopurinyl Peptidyl Nucleoside Antibiotics.
J. Am. Chem. Soc. 2019, 141, 14152-9.
https://doi.org/10.1021/jacs.9b03021
33. Yasushi Ogasawara, Mayuko Shigematsu, Shota Sato, Hinata Kato, and Tohru Dairi.
Involvement of Peptide Epimerization in Poly-γ-glutamic Acid Biosynthesis.
Org. Lett. 2019, 21, 3972-5.
https://doi.org/10.1021/acs.orglett.9b01121
32. Ruoyin Feng, Yasuharu Satoh, Hiroyuki Morita, Yasushi Ogasawara, and Tohru Dairi.
Amino Acid Residues Recognizing Isomeric Glutamate Substrates in UDP-N-acetylmuramic acid-L-alanine-glutamate Synthetases.
ACS Chem. Biol. 2019, 14, 975-8.
https://doi.org/10.1021/acschembio.9b00159
31. Shao-An Wang, Yeonjin Ko, Jia Zeng, Yujie Geng, Daan Ren, Yasushi Ogasawara, Seema Irani, Yan Jessie Zhang, and Hung-wen Liu.
Identification of the Formycin A Biosynthetic Gene Cluster from Streptomyces kaniharaensis Illustrates the Interplay between Biological Pyrazolopyrimidine Formation and de novo Purine Biosynthesis.
J. Am. Chem. Soc. 2019, 141, 6127-31.
https://dx.doi.org/10.1021/jacs.9b00241
30. Shohei Hayashi, Mai Naka, Kenshin Ikeuchi, Makoto Otsuka, Kota Kobayashi, Yasuharu Satoh, Yasushi Ogasawara, Chitose Maruyama, Yoshimitsu Hamano, Tetsuro Ujihara, and Tohru Dairi.
Control mechanism for carbon chain length in polyunsaturated fatty acid synthases.
Angew. Chem. Int. Ed. 2019, 58, 6605-10.
https://dx.doi.org/10.1002/anie.201900771
29. Shohei Hayashi, Yasuharu Satoh, Yasushi Ogasawara, Chitose Maruyama, Yoshimitsu Hamano, Tetsuro Ujihara, and Tohru Dairi.
Control mechanism for cis-double bond formation by polyunsaturated fatty acid synthases.
Angew. Chem. Int. Ed. 2019, 58, 2326-30.
https://dx.doi.org/10.1002/anie.201812623
28. Yasushi Ogasawara.
New enzymes for peptide biosynthesis in microorganisms
Biosci. Biotechnol. Biochem. 2019, 83, 589-97.
https://doi.org/10.1080/09168451.2018.1559028
27. Yasushi Ogasawara and Tohru Dairi.
Searching for potent and specific antibiotics against pathogenic Helicobacter and Campylobacter strains.
J. Ind. Microbiol. Biotechnol. 2019, 46, 409-14.
http://dx.doi.org/10.1007/s10295-018-2108-3
26. Akihiro Tazawa, Ying Ye, Taro Ozaki, Chengwei Liu, Yasushi Ogasawara, Tohru Dairi, Yusuke Higuchi, Nobuo Kato, Katsuya Gomi, Atsushi Minami, and Hideaki Oikawa.
Total Biosynthesis of Brassicicenes: Identification of a Key Enzyme for Skeletal Diversification.
Org. Lett. 2018, 20, 6178-82.
https://dx.doi.org/10.1021/acs.orglett.8b02654
25. Yohei Shimizu, Yasushi Ogasawara, Atsuko Matsumoto and Tohru Dairi.
Aplasmomycin and boromycin are specific inhibitors of the futalosine pathway.
J. Antibiot. 2018, 71, 968–70.
https://dx.doi.org/10.1038/s41429-018-0087-2
24. Zhi Feng, Yasushi Ogasawara, Satoshi Nomura, and Tohru Dairi
Biosynthetic Gene Cluster of a D‐Tryptophan‐Containing Lasso Peptide, MS‐271.
ChemBioChem 2018, 19, 2045-8.
https://dx.doi.org/10.1002/cbic.201800315
23. Taro Ozaki, Sandip S. Shinde, Lei Gao, Ryo Okuizumi,Chengwei Liu, Yasushi Ogasawara, Xiaoguang Lei, Tohru Dairi, Atsushi Minami, Hideaki Oikawa.
Enzymatic formation of a skipped methyl-substituted octaprenyl side chain of longestin (KS-505a): Involvement of homo-IPP as a common extender unit.
Angew. Chem. Int. Ed. 2018, 57, 6629-32.
https://doi.org/10.1002/anie.201802116
22. Yasushi Ogasawara and Tohru Dairi.
Peptide Epimerization Machineries Found in Microorganisms.
Front. Microbiol. 2018, 9:156.
https://doi.org/10.3389/fmicb.2018.00156
21. Haruka Niikura, Chitose Maruyama, Yasushi Ogasawara, Kazuo Shin-ya, Tohru Dairi, and Yoshimitsu Hamano.
Functional analysis of methyltransferases participating in streptothricin-related antibiotic biosynthesis.
J. Biosci. Bioeng. 2018, 125, 148-54.
https://doi.org/10.1016/j.jbiosc.2017.09.004
20. Jumpei Taguchi, Toshiki Ikeda, Rina Takahashi, Ikuo Sasaki, Yasushi Ogasawara, Tohru Dairi, Naoya Kato, Yasunori Yamamoto, Jeffrey W. Bode and Hajime Ito.
Synthesis of Acylborons by Ozonolysis of Alkenylboronates: Preparation of an Enantioenriched Amino Acid Acylboronate.
Angew. Chem. Int. Ed. 2017, 56, 13847-51.
https://dx.doi.org/10.1002/anie.201707933
19. Kunpei Takeda, Kohei Kemmoku, Yasuharu Satoh, Yasushi Ogasawara, Kazuo Shin-ya, and Tohru Dairi.
N-Phenylacetylation and Nonribosomal Peptide Synthetases with Substrate Promiscuity for Biosynthesis of Heptapeptide Variants, JBIR-78 and JBIR-95.
ACS Chem. Biol. 2017, 12, 1813-9.
http://dx.doi.org/10.1021/acschembio.7b00314
18. Yasushi Ogasawara and Tohru Dairi.
Biosynthesis of Oligopeptides using ATP-grasp Enzymes.
Chem. Eur. J. 2017, 23. 10714–24.
http://dx.doi.org/10.1002/chem.201700674
17. Ruoyin Feng, Yasuharu Satoh, Yasushi Ogasawara, Tohru Yoshimura, and Tohru Dairi.
A Glycopeptidyl-Glutamate Epimerase for Bacterial Peptidoglycan Biosynthesis.
J. Am. Chem. Soc. 2017, 139, 4243-5.
http://dx.doi.org/10.1021/jacs.7b01221
16. Yasushi Ogasawara, Kensuke Kondo, Ayumi Ikeda, Rikako Harada and Tohru Dairi.
Identification of tirandamycins as specific inhibitors of the futalosine pathway.
J. Antibiot. 2017, 70, 798-800.
http://dx.doi.org/10.1038/ja.2017.22
15. Yeonjin Ko, Shao-An Wang, Yasushi Ogasawara, Mark W. Ruszczycky, and Hung-wen Liu.
Identification and Characterization of Enzymes Catalyzing Pyrazolopyrimidine Formation in the Biosynthesis of Formycin A.
Org. Lett. 2017, 19, 1426-9.
http://dx.doi.org/10.1021/acs.orglett.7b00355
14. Junpei Kawata, Taiki Naoe, Yasushi Ogasawara, and Tohru Dairi.
Biosynthesis of the Carbonylmethylene Structure Found in the Ketomemicin Class of Pseudotripeptides.
Angew. Chem. Int. Ed. 2017, 56, 2026-9.
http://dx.doi.org/10.1002/anie.201611005
13. Yasushi Ogasawara, Michiko Fujimori, Junpei Kawata, and Tohru Dairi.
Characterization of three amidinotransferases involved in the biosynthesis of ketomemicins.
Bioorg. Med. Chem. Lett. 2016, 26, 3662-4.
http://dx.doi.org/10.1016/j.bmcl.2016.05.090
12. Yasushi Ogasawara, Junpei Kawata, Motoyoshi Noike, Yasuharu Satoh, Kazuo Furihata, and Tohru Dairi.
Exploring peptide ligase orthologs in actinobacteria—discovery of pseudopeptide natural products, ketomemicins.
ACS Chem. Biol. 2016, 11, 1686-92.
http://dx.doi.org/10.1021/acschembio.6b00046
11. Yasushi Ogasawara, Koichi Ooya, Michiko Fujimori, Motoyoshi Noike, Tohru Dairi.
Structure and activity relationships of the anti-Mycobacterium antibiotics resorcinomycin and pheganomycin.
J. Antibiot. 2016, 69, 119-20.
http://dx.doi.org/10.1038/ja.2015.88
10. Koichi Ooya, Yasushi Ogasawara, Motoyoshi Noike, Tohru Dairi.
Identification and analysis of the resorcinomycin biosynthetic gene cluster.
Biosci. Biotechnol. Biochem. 2015, 79, 1833-7.
http://dx.doi.org/10.1080/09168451.2015.1050992
9. Yasushi Ogasawara, Benjamin J. Yackley, Jacob A. Greenberg, Snezna Rogelj, Charles E. Melançon III.
Expanding our Understanding of Sequence-Function Relationships of Type II Polyketide Biosynthetic Gene Clusters: Bioinformatics-Guided Identification of Frankiamicin A from Frankia sp. EAN1pec
PLoS ONE 2015 10(4): e0121505
http://dx.doi.org/10.1371/journal.pone.0121505
8. Yasushi Ogasawara, Norah Torrez-Martinez, Anthony D. Aragon, Benjamin J. Yackley, Jessica A. Weber, Anitha Sundararajan, Thiruvarangan Ramaraj, Jeremy S. Edwards, Charles E. Melançon III.
High-Quality Draft Genome Sequence of Actinobacterium Kibdelosporangium sp. MJ126-NF4, Producer of Type II Polyketide Azicemicins, Using Illumina and PacBio Technologies.
Genome Announc. 2015 3, e00114-15.
http://dx.doi.org/10.1128/genomeA.00114-15
7. Hak Joong Kim, Reid M. McCarty, Yasushi Ogasawara, Yung-nan Liu, Steven O. Mansoorabadi, Jake Levieux, Hung-Wen Liu.
GenK-catalyzed C-6' methylation in the biosynthesis of gentamicin: isolation and characterization of a cobalamin-dependent radical SAM enzyme.
J. Am. Chem. Soc. 2013, 135, 8093-6.
http://dx.doi.org/10.1021/ja312641f
6. Mark W. Ruszczycky, Yasushi Ogasawara, Hung-wen Liu.
Radical SAM Enzymes in the Biosynthesis of Sugar-Containing Natural Products
Biochim. Biophys. Acta. 2012, 1824, 1231-44.
http://dx.doi.org/10.1016/j.bbapap.2011.11.006
5. Eita Sasaki, Yasushi Ogasawara, Hung-wen Liu.
A biosynthetic pathway for BE-7585A, a 2-thiosugar-containing angucycline-type natural product.
J. Am. Chem. Soc. 2010, 132, 7405-17.
http://dx.doi.org/10.1021/ja1014037
4. Hak Joong Kim, Jess A White-Phillip, Yasushi Ogasawara, Nara Shin, Eta Isiorho, Hung-wen Liu.
Biosynthesis of spinosyn in Saccharopolyspora spinosa: synthesis of permethylated rhamnose and characterization of the functions of SpnH, SpnI, and SpnK.
J. Am. Chem. Soc. 2010, 132, 2901-3.
http://dx.doi.org/10.1021/ja910223x
3. Yasushi Ogasawara, Hung-wen Liu.
Biosynthetic studies of aziridine formation in azicemicins.
J. Am. Chem. Soc. 2009, 131, 18066-8.
http://dx.doi.org/10.1021/ja907307h
2. Yasushi Ogasawara, Katsumi Kakinuma, Tadashi Eguchi.
Involvement of Glutamate Mutase in the Biosynthesis of the Unique Starter Unit of the Macrolactam Polyketide Antibiotic Vicenistatin
J. Antibiot. 2005, 58, 468-72.
http://dx.doi.org/10.1038/ja.2005.62
1. Yasushi Ogasawara, Kinya Katayama, Atsushi Minami, Miyuki Otsuka, Tadashi Eguchi, Katsumi Kakinuma.
Cloning, Sequencing, and Functional Analysis of the Biosynthetic Gene Cluster of Macrolactam Antibiotic Vicenistatin in Streptomyces halstedii
Chem. & Biol. 2004, 11, 79-86.
http://dx.doi.org/10.1016/j.chembiol.2003.12.010
Research Assist. Prof. Tsunoda
14. K. Ogata, R. Nakama, H. Kobayashi, T. Kawata, C. Maruyama, T. Tsunoda, T. Ujihara, Y. Hamano, Y. Ogasawara, T. Dairi
Substrate specificities of two ketosynthases in eukaryotic microalgal and prokaryotic marine bacterial DHA synthases
PNAS 112, e2424450122 (2025)
https://doi.org/10.1073/pnas.2424450122
13. T. Tsunoda, S. Furumura, H. Yamazaki, C. Maruyama, Y. Hamano, Y. Ogasawara, T. Dairi
Biosynthesis of lactacystin as a proteasome inhibitor
Commun. Chem. 8, 9 (2025)
https://doi.org/10.1038/s42004-025-01406-4
12. S. Umetsu, T. Tsunoda, H. Kiyanagi, Y. Inahashi, K. Nonaka, T. Dairi, Y. Ogasawara
Identification of a new oligomycin derivative as a specific inhibitor of the alternative peptidoglycan biosynthetic pathway
J. Antibiot. 77, 182-184 (2024)
https://doi.org/10.1038/s41429-023-00693-0
11. H. Kato, M. Sakuta, T. Tsunoda, Y. Nakashima, H. Morita, Y. Ogasawara, T. Dairi
Peptide Epimerase Responsible for D-Amino Acid Introduction in Poly-γ-glutamic Acid Biosynthesis
Biomacromolecules 25, 349 (2024).
https://doi.org/10.1021/acs.biomac.3c01000
10. T. Tsunoda‡, H. A. Abuelizz‡, A. Samadi‡, C. P. Wong, T. Awakawa, C. J. Brumsted, I. Abe, T. Mahmud, ‡ Contribution equally
Catalytic Mechanism of Nonglycosidic C–N Bond Formation by the Pseudoglycosyltransferase Enzyme VldE
ACS Catal. 13, 20, 13369–13382 (2023)
https://pubs.acs.org/doi/full/10.1021/acscatal.3c02404
9. W. Xiao, T. Tsunoda, C. Maruyama, Y. Hamano, Y. Ogasawara, T. Dairi
Peptide epimerase-dehydratase complex responsible for biosynthesis of the linaridin class ribosomal peptides
Biosci. Biotechnol. Biochem. 87, 1316 (2023).
https://doi.org/10.1093/bbb/zbad106
8. A. A. Eida, A. Samadi, T. Tsunoda, T. Mahmud
Post-glycosylation modifications of protein-bound polyketides in pactamycin biosynthesis
Chem. Eur. J., 29(33), e202301056 (2023)
https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202301056
7. S. Tanoeyadi, T. Tsunoda, T. Ito, B. Philmus, T. Mahmud
Acarbose May Functions as a Competitive Exclusion Agent for the Producing Bacteria
ACS Chem. Biol. 2023, 18, 2, 367–376
https://pubs.acs.org/doi/full/10.1021/acschembio.2c00795
6. T. Tsunoda, S. Asamizu, T. Mahmud
Biochemical Characterization of GacI, a Bifunctional Glycosyltransferase-Phosphatase Enzyme in Acarbose Biosynthesis in Streptomyces glaucescens GLA.O
Biochemistry, 61, 2628 (2022).
https://pubs.acs.org/doi/10.1021/acs.biochem.2c00473
5. T. Tsunoda, A. Samadi, B. Sachin, T. Mahmud
Complete Biosynthetic Pathway to the Antidiabetic Drug Acarbose
Nature communications, 13, 3455 (2022).
https://www.nature.com/articles/s41467-022-31232-4
4. T. Tsunoda, S. Tanoeyadi, P. J. Proteau, and T. Mahmud
The chemistry and biology of natural ribomimetics and related compounds
RSC Chemical Biology, 3, 519-538 (2022).
https://pubs.rsc.org/en/content/articlelanding/2022/CB/D2CB00019A
3. R. Nofiani, A. J. Weisberg, T. Tsunoda, R. G. P. Panjaitan, R. Brilliantoro, J. H. Chang, B. Philmus, T. Mahmud
Antibacterial Potential of Secondary Metabolites from Indonesian Marine Bacterial Symbionts
International Journal of Microbiology, 8898631 (2020).
https://www.hindawi.com/journals/ijmicro/2020/8898631/
2. F. Kudo, T. Tsunoda, K. Yamaguchi, A. Miyanaga, T. Eguchi
Stereochemistry in the Reaction of the myo-Inositol Phosphate Synthase Ortholog Ari2 during Aristeromycin Biosynthesis
Biochemistry, 58, 5112-5116 (2019)
https://pubs.acs.org/doi/10.1021/acs.biochem.9b00981
1. F. Kudo, T. Tsunoda, M. Takashima, T. Eguchi
Five-Membered Cyclitol Phosphate Formation by a myo-Inositol Phosphate Synthase Orthologue in the Biosynthesis of the Carbocyclic Nucleoside
ChemBioChem, 17, 2143-2148 (2017)
https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cbic.201600348