
浸出水中の重金属・有機化学物質の 長期的消長に関する研究

宮崎大学 土手裕

九州大学大学院 宮脇健太郎

崎田省吾

福岡大学柳瀬龍二

<目的>

文献調査による、処分場の中での重金属・有機化学 物質の長期的な消長・形態変化に関する情報の整理

浸出水中の重金属濃度

文献番号	1	2	3	4	5 a	5 b	6	7	排水基準(日本
рН	-	-	-	-	6.9	9.4	11.18	10.0) _{5.8-8.6}
Cd	0.006	0.0002	0.0002 -0.018	<0.01- <0.04	<0.01	<0.01	0.0001	<0.01	0.1
Ni	0.13	0.028	0.0036 -0.348	<0.01- 0.1	0.01	0.02	-	1	-
Zn	0.67	0.2	0.05-9	<0.01- 0.47	0.04	<0.01	0.0187	-	5
Cu	0.07	0.002	0.004- 0.27	<0.02- 0.17	<0.01	<0.01	0.47	-	3
Pb	0.07	<0.005	0.005- 0.019	<0.04-	<0.01	<0.01	0.0008	<0.01	0.1
T-Cr	0.08	0.003	0.005- 1.62	<0.01- 0.05	<0.01	<0.01	0.0393	<0.05	0.5(as Cr())
t -Fe	-	-	-	-	5.5	0.19	-	<0.1	10
Mn	-	-	-	-	2	0.04	0.0027	<0.1	10
Hg	-	-	-	-	<0.0005	<0.0005	<0.0005	-	0.005
As	-	-	-	-	<0.01	<0.01	-	<0.01	0.1

1:デンマークでの106箇所の古い埋立地の浸出水の平均値、2:デンマークでの埋立終了した埋立地の浸出水の平均値

3:ドイツでの埋立21.30年後埋立地の浸出水の範囲、4:イギリスでの4箇所の古い埋立地の浸出水の範囲

5a:日本、14年間の埋立、埋立終了後4年目(一般廃棄物)、5b:日本、5年間の埋立、埋立終了後4年目(一般廃棄物)

6:日本、埋立中、埋立開始から2年目のデータ(海面埋立、一般廃棄物の焼却残渣主体)

7:日本、7年間の埋立、埋立終了から16年目(産業廃棄物・管理型)

浸出水中の重金属濃度の経時変化例

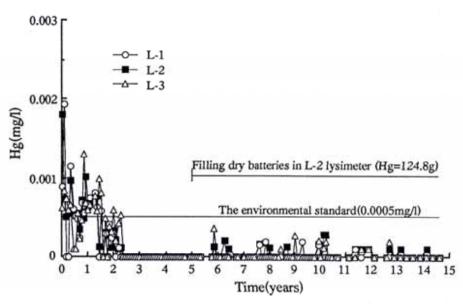


Fig.12 Change in the concentration of Hg in leachate

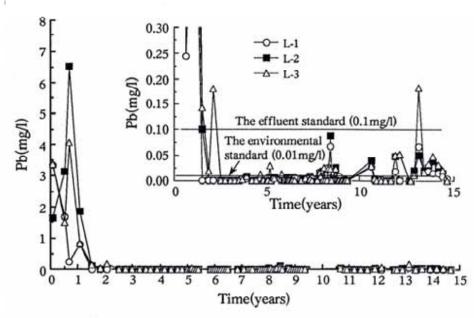


Fig.15 Change in the concentration of Pb in leachate

カラム実験

L1: 焼却残渣

L2: 焼却残渣 + アルカリ乾電池

L3;焼却残渣+覆土

埋立層内中の重金属の形態変化:ドイツの有害廃棄物埋立地。埋立物の

88%が、有害廃棄物焼却施設からのスラグ、メッキスラッジ、廃水処理スラッジ、汚染土壌、 炉解体廃棄物、金属水酸化物スラッジ

	1年目	3 年目	5 年目
酸化物			
-Fe ₂ 0 ₃			Maghemite
Zn0		Zincite	Zincite
Cu ₂ O			Cuprite
水酸化物			
-Zn(OH) ₂	Wulfingite	Wulfingite	
-Zn(OH) ₂			Ashoverite
-Fe00H		Lepidocrocite	Lepidocrocite
-Fe00H			Goethite
ハロゲン化物			
Zn ₅ (OH)Cl ₂ •H ₂ O			Simonkolleite
$Cu_2CI(OH)_3$			Atacamite
炭酸塩			
ZnCO ₃			Smithonite
$Zn_{5}(OH)_{6}(CO_{3})_{2}$			Hydrozincite

埋立層内中の重金属の形態変化: つづき

	1 年目	3年目	5 年目
Cu ₄ (SO ₄)(OH) ₆ • 4H ₂ O		Wroewolfeite	Wroewolfeite
$(Zn, Cu)_2AI_2(OH)_6(SO_4)_{0.5}$ $3H_2O$			Zn-Woodwardite
ZnFe ₂ (S0 ₄) ₄ • 14H ₂ 0			Lishizhenite
ZnSO ₄ • H ₂ O			Gunningite
ZnFe(SO ₄) ₂ (OH)•7H ₂ O			Zincobotryogen
Cu ₁₅ (SO ₄) ₄ (OH) ₂₂ •6H ₂ O			Ramsbeckite
$CuPb(SO_4)(OH)_2$			Linarite
Cu ₁₉ CI ₄ (SO ₄)(OH) ₃₂ •3H ₂ O			Connellite
$Cu_4AI_2SO_4(OH)_{12}(SO_4) \cdot xH_2O$			Woodwardite
$Cu_4(OH)_6SO_4$			Brochantite
CuFe(SO ₄)(OH)•4H ₂ O			Guildite
リン酸塩			
Fe ₃ (PO ₄) ₂ •8H ₂ O	Vivianite	Vivianite	
Fe(PO ₄)•2H ₂ O	Strengite		
Zn ₂ (OH) (PO ₄)·1.5H ₂ O		Spencerite	Spencerite
(Fe,Mn,Ca) ₃ (PO ₄) ₂			Graftonite
Fe ₃ (PO ₄) ₂ • 2H ₂ 0		Iron phosphate hydrate	
$Fe_3(PO_4)_2$		Sarkopside	
ZnFe(OH) (PO ₄)		Tarbuttite	
Zn ₂ Fe(PO ₄) ₂ • 4H ₂ O			Phosphophyllite
CaZn ₂ (PO ₄) ₂ • 2H ₂ 0			Scholzite
$Cu_2(PO_4)(OH)$			Libethenite
$Cu_{5}[(OH)_{2}(PO_{4})]_{2}$			Pseudomalachite
$Cu_3(PO_4)(OH)_3$			Cornetite
CuFe ₆ (PO ₄) ₄ (OH) ₈ • 4H ₂ O			Chalcosiderite

長期溶出モデルで考慮されているパラメータ

文献	10	11
化学平衡(沈殿)		
酸化還元電位		
炭酸塩バッファー		
収着		
錯体生成	(有効な配位	
	子:CO ₃ ²⁻ ,OH-)	
拡散		

その他: p H

有機物の測定事例

物質名	質名 埋立地の種類		濃度(測定年)		
ビスフェノ ールA	海面埋立		0.14µg/L(埋)立終了後15年)		
変異原性 (エームス 試験による)	一般廃棄物処分場	200-1,500 net revertants/L (埋立前)	500 net revertants/L(埋立終了時 (埋立期間20 年))		
ダイオキシ ン類	カラム試験 (焼却残渣埋 立)	溶出率(TEQ),< (実験開始18年	0.0001~0.041% 丰後)		

埋立層内での有機物の挙動モデル例

- 1)長期的変化予測モデル:なし
- 2)短期的予測モデル 埋立物への吸着(塩化メタン類、 *・ が、カールエン、ナフタレン、塩化 *・ない類など) 生物分解(リン酸トリエステル類、 フタル酸エステル類)

まとめ

【重金属】

長期的な溶出機構の概略はおおよそ明らかになっている。今後は、その中で重要な要素である p H の長期的な予測を進める必要がある。 埋立物、埋立方法が変化しているので、浸出水データのさらなる積み重ねが必要。

【有機化合物】

重金属のような時系列的なデータは少なく、浸出 水データのさらなる積み重ねが必要。