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Abstract

Quantum transmissions of a free particle passing through a rectangular potential barrier with dissipation are studied using a path decomposition
technique. Dissipative processes strongly suppress the transmission probability at resonance just above the barrier resulting in an unexpected
reduction of the mean traversal time through the potential barrier.
© 2007 Elsevier B.V. All rights reserved.

PACS: 03.65.Xp; 03.65.Yz; 03.75.Lm
1. Introduction

Quantum mechanics successfully describes physical proc-
esses at the microscopic scale and sometimes exhibits unique
counter-intuitive phenomena. One such example is quantum-
mechanical tunneling that cannot be explained in terms of clas-
sical mechanics. In search of an applicability for quantum me-
chanics on a macroscopic scale [1], the effect of dissipation
on quantum tunneling has been studied in respect to systems
such as superconducting devices [2–4] because dissipation is
inherent and inevitable in macroscopic scale. The observation
of quantum-tunneling-rate reduction was a first important re-
sult to be associated with quantum mechanics on a macroscopic
scale.

Quantum tunneling, however, is not the only intrinsic fea-
ture of quantum mechanics. Another unconventional example
in a classical sense is quantum reflection. Suppose that there
is a particle incident to a potential barrier, which has a height
slightly lower than the particle’s energy, as shown in Fig. 1(a).
According to classical mechanics, the particle overcomes the
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barrier and is never reflected back. In quantum mechanics, there
is the possibility that the particle cannot go over the barrier. This
leads to a remarkable phenomenon called a transmission res-
onance. That is due to multiple quantum reflections between
potential boundaries. In other words, the resonance occurs
due to interference associated with the back-and-forth motions
of the particle. Quantum tunneling only shows its quantum-
mechanical feature at the moment of the tunneling event, while
the interference requires for a certain definite period to retain
quantum coherence based on the quantum-mechanical super-
position of states. Therefore, quantum interference appears a
more convincing quantum-mechanical effect than does quan-
tum tunneling. Indeed, the effect of dissipation on the quantum-
mechanical superposition of macroscopically distinguishable
states, so-called Schrödinger’s cat in a fundamental problem
of quantum mechanics, has been studied along these lines in
respect to superconducting nanodevices [5,6] for example. Re-
cently, this cat state has been utilized as a building block for
a quantum computer in quantum information science. Further-
more, direct observations of matter wave interference revealed
that inevitable sources of dissipation for large molecules, e.g.
collisions to external molecules [7] or internal vibrations re-
sulting in thermal photon radiations [8], play a key role for
the quantum-to-classical transition of “free” particle. Even the
gravitational waves were suggested to become a source of de-
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Fig. 1. Schematic diagrams of (a) three decomposed regions for a rectangular potential barrier, (b) typical possible paths, (c) uncertainty of energy, and (d) uncertainty
of potential height, where the diagram (c) is equivalent to (d).
coherence of matter waves [9]. Thus, macroscopic transmis-
sion resonance originated from quantum interference of macro-
scopic object also provides an alternative platform to that of
quantum tunneling for testing the validity of quantum mechan-
ics on a macroscopic scale.

The transmission of a particle through a rectangular poten-
tial barrier in the absence of dissipation has been well studied
within the framework of Schrödinger’s wave mechanics at the
textbook level. A simple extension for incorporating dissipa-
tion in that framework was made by Cai et al. [10] to deal
with the problem that an electron propagates above a quan-
tum well with dissipation due to the electron–optical-phonon
interaction. They succeeded in revealing the electron-capture
process in a quantum well that involves a loss of electron energy
via phonon emission. However, in order to investigate the prob-
lem addressed here, we need an alternative approach in which
the influence of the particle motion on the environment is also
included. In particular, our interest is directed to the transmis-
sion resonance formed just above the potential barrier where the
Wentzel–Kramers–Brillouin (WKB) method adopted in previ-
ous studies [11,12] breaks down.

In this Letter, we employ a path decomposition expansion
method [13–16] based on the path-integral approach, and de-
velop it to incorporate dissipative processes. Then we discuss
the effect of dissipation on quantum transmission resonance.
Since the resonance may be attributed to the back-and-forth mo-
tions of a particle between the potential boundaries, as pointed
out by Bohm in his seminal book [17], the particle will stay
in region II for a longer time at resonance. Thus the resonance
could be characterized by the time spent in the potential barrier
region, i.e., the traversal time. Therefore, we investigate dissipa-
tive quantum transmission resonance in terms of traversal time
on the basis of Bohm’s interpretation.
This Letter is organized as follows. In Section 2, we formu-
late the transmission probability through a rectangular potential
barrier with dissipation by using a path decomposition tech-
nique. We also perform numerical calculations of the transmis-
sion probabilities. Then we will find the non-uniform reduction
of transmission probability even though we assume an energy-
independent damping processes. In Section 3, we introduce the
traversal time under dissipation to explain the unexpected re-
duction on the basis of Bohm’s interpretation. We also provide
further evidence for our interpretation by using traversal time
distribution, which results in an unexpected shortened mean tra-
versal time. In Section 4, we provide a summary and propose a
possible experimental setup.

2. Transmission probability in the presence of dissipation

2.1. Analytical description of transmission probability

We briefly review a path decomposition expansion devel-
oped by Auerbach and Kivelson [13]. This enables us to deal
with quantum transmission in terms of the path integral ap-
proach. In the path decomposition technique, the summation
of possible paths is decomposed into certain groups as shown
in Fig. 2. The first group is composed of all possible paths that
pass straight over regions I, II, and III in that order. The next
group includes all paths that go from region I to region II, then
return to region I once, and go from region II to III. In the same
way, one can consider all other groups. Thus, the total summa-
tion of paths is given by an infinite series of groups as shown
in Fig. 2. Each group is completely expressed by the propa-
gators K(I)(x′, x), K(II)(x′, x) and K(III)(x′, x) defined in the
restricted regions I, II and III, respectively. Since all possible
paths are taken for summation, no approximation is used in this
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Fig. 2. Illustration of the path decomposition technique. Several groups of summations of all possible paths are shown (see also text). Each group is classified
according to which regions the paths have passed over in terms of temporal development. Two examples of the possible paths are shown by solid and dashed curves
in each figure.
technique, the point of which prevails against the WKB method.
The propagator K(xT , x0;T ) from x0(< a) at t = 0 to xT (> b)

at t = T is then decomposed as [13]

iK(xT , x0;T )

=
T∫

0

dt1

T −t1∫
0

dt2 iK(I)(a, x0; t1)Σa
x

(
iK(II)(b, x; t2)

)

× Σb
x

(
iK(III)(xT , x;T − t1 − t2)

)

+
T∫

0

dt1

T −t1∫
0

dt2

T −t1−t2∫
0

dt3

T −t1−t2−t3∫
0

dt4

× iK(I)(a, x0; t1)Σa
x

(
iK(II)(a, x; t2)

)
× Σa

x

(
iK(I)(a, x; t3)

)
Σa

x

(
iK(II)(b, x; t4)

)
× Σb

x

(
iK(III)(xT , x;T − t1 − t2 − t3 − t4)

)
(1)+ · · · ,

where Σa
x denotes a derivative operator defined by

(2)Σa
x

(
iK(II)(b, x; t)) ≡ εab

h̄

2m

∂

∂x

(
iK(II)(b, x; t))

∣∣∣∣
x=a

.

Here, m is the particle mass, and

(3)εab ≡
{

1 (a < b),

−1 (a > b)

(see Ref. [13] for details).
In the absence of dissipation, the propagator K(II) in re-

gion II is expressed as [18]

K(II)(x′, x; t)
=

√
m

2πih̄t

∞∑
n=−∞

{
exp

[
im(2nd + x′ − x)2

2h̄t

]

(4)− exp

[
im((2n + 1)d − (x′ − b) − (x − a))2

2h̄t

]}
,

where d is defined by d = b − a, and n characterizes differ-
ent classical paths in each term. The first term is composed of
all paths with even numbers of reflections at the boundaries of
x = a and x = b, and the second term corresponds to the odd
numbers of reflections. Paths that start to move in a negative
direction in relation to the initial position are characterized by
negative n. Eq. (4) indicates that the propagator in region II
is essentially expressed by the summation of a free particle’s
propagator;

(5)K0(x
′, t;x,0) =

√
m

2πih̄t
exp

[
im(x′ − x)2

2h̄t

]
.

Now let us consider the propagator K
(II)
D in the presence of

dissipation. Dissipation in quantum mechanics has long been
discussed since it cannot be included as a form of analytical me-
chanics. It remains unresolved. However, several aspects such
as dissipative quantum tunneling and quantum Brownian mo-
tion have been presented. Here we employ a phenomenological
model successfully introduced by Caldeira and Leggett [19], to
describe dissipation in a study of quantum Brownian motion of
a particle in harmonic potential. They modeled an environment
as a set of a huge number of harmonic oscillators that produces
a classical equation of motion with dissipation. We apply their
model to a free particle coupled to the environment.

According to their model, the effect of the propagator K
(II)
D

is included in the expression for the time evolution of the system
of interest coupled to environment described by

(6)ρ(x, y, t) =
∫

dxi dyi J (x, y, t;xi, yi,0)ρ(xi, yi,0),

where J (x, y, t;x′, y′,0) is the propagator for the density ma-
trix ρ(x, y, t) = 〈x|ψ(t)〉〈ψ(t)|y〉 of the free particle, and the
autocorrelation of stochastic force Fcl(τ )

(7)
〈
Fcl(τ )Fcl(s)

〉 = 2ηkBT ′δ(τ − s)

is imposed on it. Indeed, in the absence of dissipation, the above
expression for a free particle includes the free particle’s propa-
gator K0 as

(8)

ρ(x, y, t) =
∫

dxi dyi K
∗
0 (y, t;yi,0)K0(x, t;xi,0)ρ(xi, yi,0).

In particular, when the initial state is given by 〈x|ψ(0)〉 = δ(x−
x0), we simply have

(9)ρ(x, x, t) = K∗
0 (x, t;x0,0)K0(x, t;x0,0) = m

2πih̄t
.

In the case of a free particle coupled to a set of harmonic
oscillators, with 〈x|ψ(0)〉 = δ(x − x0), the density matrix is
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given by

(10)ρ(x, x, t) = m

2πh̄t
f (t),

with

(11)f (t) ≡ σ teγ t

sinhσ t
,

where γ is a relaxation rate, and σ is defined by σ ≡√
γ 2 + (4γΩ/π)2. Here Ω is the cutoff frequency for the

frequency distribution of harmonic oscillators. The function
f (t) can be obtained by integrating the degrees of freedom
of the environment and, therefore, includes the effect of the
associated harmonic oscillators. Since the cutoff frequency Ω

is sufficiently large compared with γ , the function f (t) be-
comes a monotonically decreasing function, which decays ex-
ponentially, i.e., f (t) ∝ e−(σ−γ )t . It should also be noted that
f (0) = 1 and f (t) > 0 for t > 0. In the limit of γ → 0, since
f (t) → 1, we retrieve the result for the non-dissipative case
|K0(x, t;x0,0)|2 = m/2πh̄t , where K0 is the free particle’s
propagator shown in Eq. (5). Therefore, we can consider the
propagator for the dissipative case to be effectively expressed
as

(12)KD(x, t;x0,0) = √
f (t)K0(x, t;x0,0),

which gives the same result as Eq. (10).
The propagator in region II is obtained by summing up the

free particle’s propagators along possible classical paths. Thus,
we obtain the effective propagator in region II with dissipation
as

(13)K
(II)
D (x′, x; t) = √

f (t)K(II)(x′, x; t).
The full propagator, taking account of the dissipative effect, is
given by

iKD(xT , x0;T )

=
T∫

0

dt1

T −t1∫
0

dt2
√

f (t2)iK
(I)(a, x0; t1)Σa

x

(
iK(II)(b, x; t2)

)

× Σb
x

(
iK(III)(xT , x;T − t1 − t2)

)

+
T∫

0

dt1

T −t1∫
0

dt2

T −t1−t2∫
0

dt3

T −t1−t2−t3∫
0

dt4

× √
f (t2 + t4)iK

(I)(a, x0; t1)Σa
x

(
iK(II)(a, x; t2)

)
× Σa

x

(
iK(I)(a, x; t3)

)
Σa

x

(
iK(II)(b, x; t4)

)
× Σb

x

(
iK(III)(xT , x;T − t1 − t2 − t3 − t4)

)
(14)+ · · · ,

where since f (t) behaves as an exponentially decaying func-
tion, we have used the approximation f (t)f (t ′) ≈ f (t + t ′),
whose iterative use leads to

∏
i f (ti) ≈ f (

∑
i ti ).

To convert Eq. (14) into an energy representation, we per-
form a Fourier transform of the propagator as

(15)GD(xT , x0;E) ≡ i

∞∫
dT KD(xT , x0;T )eiET/h̄.
0

Utilizing the expression√
f (Σiti)

=
∞∫

0

dτ
√

f (τ)δ(τ − Σiti)

(16)=
∞∫

0

dτ
√

f (τ)
1

2π

∞∫
−∞

dω e−iω(τ−Σiti ),

we finally obtain the Green function including the dissipative
effect as

(17)GD(xT , x0;E) = wD(E,V0)G0(xT , x0;E),

where G0(xT , x0) is the Green function when the barrier is ab-
sent, and the transmission amplitude wD(E,V0) is given by

(18)wD(E,V0) =
∞∫

0

dτ
√

f (τ)

∞∫
−∞

dω

2π
e−iωτw(E,V0 − h̄ω).

Here, w(E,V0) is the transmission amplitude in the absence of
dissipation

(19)w(E,V0) = − 2ikκe−ikd

(k2 + κ2) sinκd + 2ikκ cosκd
,

where

(20)k ≡
√

2mE

h̄
, κ ≡

√
2m(E − V0)

h̄
.

The paths in an energy representation are introduced by the po-
tential deviations in terms of an energy quantum h̄ω as shown
in Fig. 1(c) and (d). Therefore, the transmission probability
including the effect of dissipation is given by |wD(E,V0)|2.
Eqs. (17) and (18) are our main result.

2.2. Numerical estimates of transmission probabilities

In our numerical calculations, we restrict ourselves to a con-
stant γ damping for any E even though the relaxation rate γ

may depend on the incident energy E of the particle in gen-
eral. Fig. 3 shows the transmission probabilities for different γ

Fig. 3. Transmission probabilities as a function of E/V0. γ τ∗ = 5 × 10−3,
1 × 10−3 and 0 are plotted, where τ∗ ≡

√
md2/2V0. In the calculations, we

adopted d/λ0 = 5 and Ωτ∗ = 100.
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values. Two dimensionless parameters characterize the trans-
mission probability, i.e., the particle energy normalized by the
potential height, E/V0, and the potential width normalized by
the typical scale of length, d/λ0, where λ0 ≡ h̄/

√
2mV0. The

dashed curve shows the transmission probabilities for a non-
dissipative case. The oscillatory structure is caused by transmis-
sion resonance, which arises as a result of quantum reflection
at the barrier edges. From Eq. (19), perfect transmission occurs
whenever the barrier contains an integer number of a half wave-
length, i.e., κd = nπ (n = 1,2, . . .).

In the presence of dissipation, the transmission probabilities
are greatly suppressed. The blurred oscillatory structure implies
that the suppression is not uniform with respect to energy, even
for the energy-independent relaxation rate γ . Indeed, signifi-
cant suppression occurs around the resonance conditions.

3. Traversal Time through Barrier

3.1. Traversal time and transmission probability

In a classical description transmission resonance can be at-
tributed to the back-and-forth motion of a particle between the
edges of the potential barrier. This will lead to a longer stay in
region II, equivalent to a longer traversal time. Hence we can
investigate the transmission probabilities in the presence of dis-
sipation in terms of the traversal time through region II.

In terms of the path integral formalism [14–16], the traversal
time has a distribution, because all possible paths are consid-
ered and a certain weight is assigned to each path in the path
integral. According to Fertig [16], the probability amplitude of
a particle spending time τ in region II is defined by

(21)F(τ) ≡
∑

path:C eiS(C)/h̄δ(τ − τII(C))∑
path:C eiS(C)/h̄

,

where C denotes a path, S denotes the action, and τII(C) is
the traversal time through region II along path C. The denom-
inator in Eq. (21) is by definition equivalent to the propagator
K(xT , x0;T ). The delta function in the numerator extracts the
paths with traversal time τ . In the following discussion, we as-
sume a constant energy state within the limits of x0 → −∞ and
xT → ∞.

First, we investigate the relationship between the transmis-
sion resonance and the traversal time in the absence of dissipa-
tion. The mean traversal time 〈τ 〉 is defined by

(22)〈τ 〉 ≡
∞∫

0

τF (τ) dτ.

In the case of a rectangular potential barrier it is given by [16]

〈τ 〉 = m

h̄

2k

κ

Aκd − B sinκd cosκd

B2 sin2 κd + 4k2κ2

(23)+ i
m

h̄

Bκd cosκd − A sinκd

B2 sin2 κd + 4k2κ2

B

κ2
sinκd,

where

(24)A ≡ k2 + κ2, B ≡ k2 − κ2.
Under the resonance (the constructive interference) condi-
tions κd = nπ (n = 1,2, . . .), Eq. (23) is reduced to the expres-
sion

(25)〈τ 〉 = mdA

2h̄kκ2
.

Using the inequality

(26)
α + β

2
�

√
αβ (∀α,β > 0),

we can prove that for any condition, 〈τ 〉 is larger than the classi-
cal traversal time τcl defined by τcl ≡ md/h̄κ . That is, 〈τ 〉 � τcl.
As well, the imaginary part of the mean traversal time vanishes
under these conditions.

On the other hand, destructive interference occurs at κd =
(n + 1/2)π . Under these conditions, the mean traversal time is

(27)〈τ 〉 = 2mkd

h̄A
− i

mB

h̄κ2A
.

In particular, we have

(28)Re
[〈τ 〉] = 2mkd

h̄A
� τcl.

Hence, the real part of 〈τ 〉 is smaller than the classical traversal
time for any case of destructive resonance.

Fig. 4 shows |〈τ 〉| − τcl as a function of E/V0. There are
several peaks around the resonance conditions. The absolute
value |〈τ 〉| approaches the classical traversal time for larger E.
Thus, the particle experiences a longer traversal time under res-
onance conditions as a result of multiple quantum reflections
at the boundaries. This explains why non-uniform suppressions
of transmission probabilities in the presence of dissipation oc-
cur. That is, the longer traversal time leads to larger dissipation
because the damping factor f (t) depends on the traversal time
through region II. The most significant reduction in the trans-
mission probability is then expected to occur at around the first
resonance resulting from the longest traversal time compared to
the classical one as shown in Fig. 4.

Fig. 4. Deviation of the mean traversal time from the classical traversal time,
|〈τ 〉| − τcl, in the absence of dissipation. In the calculation, we adopted
d/λ0 = 5. The resonance points are given by E/V0 = 1 + n2π2/(d/λ0)2 

1.39, 2.58, 4.55, . . . .
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This can be seen in the formula of the transmission ampli-
tude wD(E,V0) with dissipation Eq. (18). It can be rewritten
as

(29)wD(E,V0) = w(E,V0)

∞∫
0

dτ
√

f (τ)F (τ).

In the absence of dissipation, we can reproduce the non-
dissipative expression since

∫ ∞
0 dτ F (τ) = 1. The function

f (τ) is a positive-definite decaying function as mentioned
above. Hence, the factor

√
f (τ) in Eq. (29) is considered to

weaken the contribution from paths with a longer traversal time
through region II. Therefore, paths with a shorter traversal time
mainly contribute to the probability amplitude in the presence
of dissipation.

3.2. Traversal time distribution in the presence of dissipation

The dissipative effect on the traversal time also appears in
traversal time distribution. Based on the same formulation [16],
we can evaluate the traversal time distribution in the presence of
dissipation by replacing w with wD. The probability amplitude
is then given by

(30)FD(τ ) = 1

wD(E,V0)

∞∫
−∞

dω

2π
e−iωτwD(E,V0 − h̄ω).

Note that the traversal time distribution is related to the poten-
tial variation given by the right-hand side in Eq. (30), which
implies an equivalence between Fig. 1(c) and Fig. 1(d). After
some calculations, we obtain

(31)FD(τ ) =
√

f (τ)F (τ)∫ ∞
0

√
f (τ)F (τ) dτ

.

From the above-mentioned properties of
√

f (τ), the center of
the distribution function FD(τ ) is relatively shifted to the di-
rection of smaller τ when compared with F(τ) without dissi-
pation. Namely, the mean traversal time 〈τD〉 = ∫ ∞

0 τFD(τ ) dτ

is considered to become smaller than 〈τ 〉. This feature may be
counterintuitive with respect to the idea that dissipation causes
particle slow down.

This feature can be also found in the cumulative probability
amplitude CD(τ ) defined as

CD(τ ) =
τ∫

0

dτ ′ FD(τ ′)

(32)= 1

wD(E,V0)

∞∫
−∞

dω
sinωτ

πω
wD(E,V0 − h̄ω),

which describes the probability amplitude for the traversal time
taking a value between 0 and τ . The function CD(τ ) asymptot-
ically approaches unity for a larger τ . Fig. 5 shows examples
of the cumulative probability amplitude CD(τ ) for γ �= 0 and
γ = 0. Two curves converge to 1 by definition as τ becomes
larger. In particular, CD(τ ) with a non-zero γ converges to 1
Fig. 5. The absolute value of the cumulative probability amplitude CD(τ ). We
adopted E/V0 = 1.3, d/λ0 = 5, Ωτ∗ = 100 and γ τ∗ = 5 × 10−3 or 0.

faster than the curve for γ = 0. This means that the traversal-
time distribution becomes narrower and the mean value be-
comes smaller when the dissipative effect is taken into account.
This reduced mean value arises from the path selection caused
by the dissipative effect, whereby paths taking a longer time in
region II are effectively discarded. Therefore, the mean traver-
sal time becomes shorter.

4. Summary and discussion

We have studied the effect of dissipation on the quantum
transmission of a particle through a rectangular potential bar-
rier, especially focusing on transmission resonance. We ex-
tended the path decomposition method to incorporate the dis-
sipative effect into the calculations of the quantum transmis-
sion. The transmission probabilities are always suppressed by
the effect of dissipation, especially at the first resonance be-
cause of the longer traversal time. As well, the mean traversal
time in the presence of dissipation becomes smaller than that
in a non-dissipative case. This is the result of path selections
due to dissipation. We have not restricted ourselves to a spe-
cific scale. Thus our theory is applicable to any scale, including
a macroscopic one. The study of transmission resonance of a
macroscopic object is useful to test an applicability of quantum
mechanics on a macroscopic scale.

Finally, we discuss an experimental setup for such a macro-
scopic object to test our theory. Such an experiment could be re-
alized in a specific macroscopic system. A promising candidate
is a system consisting of a fluxon in a long Josephson junction.
The fluxon is a topological soliton excitation with a quantum
unit of magnetic flux produced by a circulating supercurrent,
i.e., a vortex, and is regarded as a single free macroscopic par-
ticle characterized by a huge number of microscopic degrees of
freedom [20]. It also behaves like a quantum particle [21] in a
mesoscopic Josephson junction with small capacitance per unit
area. In fact, the quantum tunneling of a fluxon has recently
been observed in a long annular Josephson junction [22].

Under these circumstances, a fluxon transmission experi-
ment is possible. The potential barrier for the fluxon can be
made of a microshort [23], which is a part made of a thinner in-
sulator than the other part. The study of fluxon transmission will
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complement that of quantum tunneling in research on macro-
scopic quantum phenomena. Moreover, a fluxon transmission
experiment will also provide an important basis for implement-
ing quantum computation in superconducting nanocircuits. In-
deed, a qubit using superposition states of fluxons or breathers
has recently been considered [24].
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Appendix A. Propagator and its Green’s function

In the energy representation, the propagator is expressed by
the Fourier transformation as

(A.1)G(xT , x0;E) ≡ i

∞∫
0

dT K(xT , x0;T )eiET/h̄.

Eq. (1) is now reexpressed in this representation as

G(xT , x0;E)

= G(I)(a, x0;E)Σa
x

(
G(II)(b, x;E)

)
Σb

x

(
G(III)(xT , x;E)

)
+ G(I)(a, x0;E)Σa

x

(
G(II)(a, x;E)

)
Σa

x

(
G(I)(a, x;E)

)
(A.2)× Σa

x

(
G(II)(b, x;E)

)
Σb

x

(
G(III)(xT , x;E)

) + · · · .
In the case of the rectangular potential, the Green functions are
given by [16]

(A.3)G(I)(x′, x) = −2m

h̄k
e−ik(x−a) sink(x′ − a),

(A.4)G(II)(x′, x) = −2m

h̄κ

sinκ(x − a) sinκ(x′ − b)

sinκd
,

(A.5)G(III)(x′, x) = 2m

h̄k
eik(x′−a) sin k(x − a),

where x < x′, d ≡ b − a and

(A.6)k ≡
√

2mE

h̄
, κ ≡

√
2m(E − V0)

h̄
.

Here m is the particle mass. Using these Green functions,
Eq. (A.2) can be calculated in the form [16]

(A.7)G(xT , x0;E) = w(E,V0)G0(xT , x0),

where G0(xT , x0) is the Green function when the barrier is ab-
sent

(A.8)G0(xT , x0) = − m

ih̄k
eik(xT −x0),
and w(E,V0) is the transmission amplitude given by

(A.9)w(E,V0) = − 2ikκe−ikd

(k2 + κ2) sinκd + 2ikκ cosκd
.

The usual expression for the transmission probability is ob-
tained as

(A.10)
∣∣w(E,V0)

∣∣2 = 4k2κ2

(k2 − κ2)2 sin2 κd + 4k2κ2
.

Thus the exact transmission probability can also be obtained
using the path decomposition expansion.

Appendix B. Free particle coupled to harmonic oscillators

Caldeira and Leggett [19] published a result for the quantum
Brownian motion in a harmonic potential. The result is modi-
fied in the following way for a free particle,

J (xf, yf, t;xi, yi,0)

= N(t)

πh̄
exp

[
i

h̄

{
K(t)(ζfξf + ζiξi) − L(t)ζiξf

− N(t)ζfξi − γ
m

2
(ζfξf − ζiξi)

}]

(B.1)× exp

[
− 1

h̄

{
A(t)ξ2

f + B(t)ξfξi + C(t)ξ2
i

}]
,

where

(B.2)K(t) = m

2
σ cothσ t,

(B.3)L(t) = m

2

σe−γ t

sinhσ t
,

(B.4)N(t) = m

2

σeγ t

sinhσ t
,

(B.5)

A(t) = 2mγ

π

Ω∫
0

dωω coth
h̄ω

2kBT ′

t∫
0

dτ

τ∫
0

ds

× eγ (τ+s−2t) cosω(τ − s) sinhστ sinhσs

sinh2 σ t
,

(B.6)

B(t) = −2mγ

π

Ω∫
0

dωω coth
h̄ω

2kBT ′

t∫
0

dτ

τ∫
0

ds

× eγ (τ+s−t) cosω(τ − s)

sinh2 σ t

[
sinhστ sinhσ(s − t)

+ sinhσ(τ − t) sinhσs
]
,

(B.7)

C(t) = 2mγ

π

Ω∫
0

dωω coth
h̄ω

2kBT ′

t∫
0

dτ

τ∫
0

ds eγ (τ+s)

× cosω(τ − s) sinhσ(τ − t) sinhσ(s − t)

sinh2 σ t
,

where J (xf, yf, t;xi, yi,0) is the propagator for the density ma-
trix ρ(x, y, t) of the free particle, i.e., ρ(x, y, t) =∫

dx′ dy′ J (x, y, t;x′, y′,0)ρ(x′, y′,0). Here, kB is the Boltz-
mann constant, T ′ is the temperature, ζ ≡ x + y, ξ ≡ x − y,
and the boundary condition is given by ζ(0) = ζi, ζ(t) = ζf,
ξ(0) = ξi and ξ(t) = ξf.



K. Konno et al. / Physics Letters A 368 (2007) 442–449 449
References

[1] A.J. Leggett, Prog. Theor. Phys. Suppl. 69 (1980) 80.
[2] A.O. Caldeira, A.J. Leggett, Phys. Rev. Lett. 46 (1981) 211.
[3] A.O. Caldeira, A.J. Leggett, Ann. Phys. 149 (1983) 374.
[4] R.F. Voss, R.A. Webb, Phys. Rev. Lett. 47 (1981) 265.
[5] J.R. Friedman, et al., Nature (London) 406 (2000) 43.
[6] C.H. van der Wal, et al., Science 290 (2000) 773.
[7] K. Hornberger, et al., Phys. Rev. Lett. 90 (2003) 160401.
[8] L. Hackermüller, et al., Nature (London) 427 (2004) 711.
[9] B. Lamine, et al., Phys. Rev. Lett. 96 (2006) 050405.

[10] W. Cai, P. Hu, T.F. Zheng, B. Yudanin, M. Lax, Phys. Rev. B 41 (1990)
3513.

[11] R. Bruinsma, P. Bak, Phys. Rev. Lett. 56 (1986) 420.
[12] R. Bruinsma, P.M. Platzman, Phys. Rev. B 35 (1987) 4221.
[13] A. Auerbach, S. Kivelson, Nucl. Phys. B 257 (1985) 799.
[14] D. Sokolovski, L.M. Baskin, Phys. Rev. A 36 (1987) 4604;

D. Sokolovski, J.N.L. Connor, Phys. Rev. A 42 (1990) 6512.
[15] L.S. Schulman, R.W. Ziolkowski, in: V. Sa-Yakanit, et al. (Eds.), Pro-
ceedings of the Conference on Path Integrals from meV to MeV, World
Scientific, Singapore, 1989, pp. 253–278.

[16] H.A. Fertig, Phys. Rev. Lett. 65 (1990) 2321;
H.A. Fertig, Phys. Rev. B 47 (1993) 1346.

[17] D. Bohm, Quantum Theory, Prentice Hall, Englewood Cliffs, NJ, 1951,
p. 283.

[18] L.S. Schulman, Techniques and Applications of Path Integration, Dover,
New York, 2005.

[19] A.O. Caldeira, A.J. Leggett, Physica A 121 (1983) 587;
A.O. Caldeira, A.J. Leggett, Physica A 130 (1985) 374, Erratum.

[20] D.J. Bergman, E. Ben-Jacob, Y. Imry, K. Maki, Phys. Rev. A 27 (1983)
3345.

[21] T. Kato, M. Imada, J. Phys. Soc. Jpn. 65 (1996) 2963.
[22] A. Wallraff, et al., Nature (London) 425 (2003) 155.
[23] Y.S. Kivshar, B.A. Malomed, Rev. Mod. Phys. 61 (1989) 763.
[24] T. Fujii, et al., in: Proceedings of Foundation of Quantum Mechanics in

the Light of New Technology, 2006, pp. 88–91.


	The effect of dissipation on quantum transmission resonance
	Introduction
	Transmission probability in the presence of dissipation
	Analytical description of transmission probability
	Numerical estimates of transmission probabilities

	Traversal Time through Barrier
	Traversal time and transmission probability
	Traversal time distribution in the presence of dissipation

	Summary and discussion
	Acknowledgements
	Propagator and its Green's function
	Free particle coupled to harmonic oscillators
	References


