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Rotating black hole solutions in the �3� 1�-dimensional Chern-Simons modified gravity theory are
discussed by taking account of perturbation around the Schwarzschild solution. The zenith-angle
dependence of a metric function related to the frame-dragging effect is determined from a constraint
equation independently of a choice of the embedding coordinate. We find that at least within the
framework of the first-order perturbation method, the black hole cannot rotate for finite black hole
mass if the embedding coordinate is taken to be a timelike vector. However, the rotation can be permitted
in the limit of M=r! 0 (where M is the black hole mass and r is the radius). For a spacelike vector, the
rotation can also be permitted for any value of the black hole mass.
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I. INTRODUCTION

The latest observational results of the cosmic microwave
background (CMB) anisotropy from the Wilkinson
Microwave Anisotropy Probe (WMAP) [1] are success-
fully explained by the � cold dark matter standard model.
However, two big issues still remain: what is dark matter,
and what is dark energy? According to the WMAP results,
unfortunately about 96% of the contents of the Universe is
given by the dark components that we still do not know.
Therefore, properties of dark matter and dark energy have
eagerly been investigated from observations [2,3].

In contrast with the ordinary approaches [2,3], in which
the existence of the dark components is assumed, it is of
great interest to investigate alternative gravity theories [4–
8] to solve the dark matter and dark energy problem. In this
paper, we focus our attention on the Chern-Simons modi-
fied gravity theory [9]. This gravity theory was constructed
by Deser et al. [9] in (2� 1) spacetime dimensions for the
first time by analogy with the topologically massive U(1)
and SU(2) gauge theories. The Chern-Simons modified
gravity theory was relatively recently extended by Jackiw
and Pi [10] to (3� 1) spacetime dimensions. In the ex-
tended theory, the Schwarzschild solution holds without
any modification [10]. Therefore, the theory passes the
classical tests of general relativity [11]. In this gravity
theory, however, the Kerr solution does not hold. Thus,
the solution for a rotating black hole should have a differ-
ent form from the Kerr solution. In �2� 1�-dimensional
Chern-Simons modified gravity, a family of rotating black
hole solutions was found by Moussa et al. [12]. The
solutions have a fascinating feature that observers in this
spacetime behave like ones inside the ergosphere of the
Kerr spacetime. This feature is similar to that of the rota-
tion of galaxies [13]. Therefore, it is very interesting to
investigate rotating black hole solutions in the �3�
1�-dimensional Chern-Simons modified gravity theory. In

this paper, we discuss rotating black hole solutions taking
account of perturbation around the Schwarzschild solution.

This paper is organized as follows. In Sec. II, we briefly
review the �3� 1�-dimensional Chern-Simons modified
gravity theory. In Sec. III, we consider the perturbation
around the Schwarzschild solution to discuss slow rotation
of the black hole. First we investigate a constraint equation
independently of a choice of the embedding coordinate. In
Sec. III A, from the first-order equations of the field equa-
tion, we obtain the metric solution taking the embedding
coordinate to be timelike. In Sec. III B, we investigate the
metric solution for the case in which the embedding coor-
dinate is spacelike. Finally, we provide a summary in
Sec. IV. In this paper, we use a unit in which c � G � 1.

II. BRIEF REVIEW OF CHERN-SIMONS
MODIFIED GRAVITY THEORY

We briefly review the Chern-Simons modification of
general relativity developed by Jackiw and Pi [10]. The
Chern-Simons modified gravity theory is provided by the
action

 I �
Z
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where the first term in the integrand is the Einstein-Hilbert
action, and v� � @�# is an external 4-vector, which is
called the embedding coordinate. The Pontryagin density
�RR is defined by �RR � �R����R����, using the dual
Riemann tensor �R��

�� � 1
2 "
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Simons topological current K� is given by
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which is related to the Pontryagin density as @�K� �
1
2
�RR.*konno@topology.coe.hokudai.ac.jp

PHYSICAL REVIEW D 76, 024009 (2007)

1550-7998=2007=76(2)=024009(5) 024009-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.76.024009


From the variation of the Lagrange density L with
respect to the metric g��, it turns out that the field equation
has the form

 G�� � C�� � �8�T��; (3)

where G�� � R�� � 1
2g

��R is the Einstein tensor, T�� is
the energy-momentum tensor, and C�� is the Cotton tensor
defined as
 

C�� � �
1

2
�������
�g
p �v��"����r�R�� � "

����r�R���

� v���
�R���� � �R�����	: (4)

Here v�� � r�v� � @�@�# � �
��@
# is a symmetric
tensor. Corresponding to the Bianchi identity r�G�� �

0 and the equation of motion r�T�� � 0, the following
condition should be imposed:

 0 � r�C�� �
1

8
�������
�g
p v��RR: (5)

This constraint equation implies that diffeomorphism sym-
metry breaking is suppressed [10].

III. PERTURBATIVE APPROACH TO ROTATING
BLACK HOLE SOLUTIONS

In the Chern-Simons modified gravity theory, the
Schwarzschild solution as a nonrotating black hole solu-
tion holds without any modification as mentioned above.
The Schwarzschild metric is given by
 

ds2 � �

�
1�

2M
r

�
dt2 �

�
1�

2M
r

�
�1
dr2

� r2�d�2 � sin2�d�2�; (6)

whereM is the black hole mass. This solution gives C�� �
0 and r�C�� � v��RR=�8

�������
�g
p

� � 0 trivially.
In order to take account of rotation of the black hole, let

us consider perturbation around the Schwarzschild solu-
tion. In the perturbation, the expansion parameter 
 is
related to the angular momentum J of the black hole,
i.e., J
O�
�. Under the assumption of stationary, axisym-
metric spacetime, we can write the form of the perturbed
metric as [14–16]
 

ds2 � �

�
1�

2M
r

�
�1� h�r; ���dt2

�

�
1�

2M
r

�
�1
�1�m�r; ���dr2

� r2�1� k�r; ����d�2 � sin2��d��!�r; ��dt�2	:

(7)

The functions h�r; ��,m�r; ��, k�r; ��, and!�r; �� are of the
first order in 
. Hereafter, we take account of equations up
to the first order in 
.

Using this perturbed metric, from the condition (5), we
obtain

 0 � r�C
�� � v�

3M

r3 sin��!;r� � 2 cot�!;r	; (8)

where a subscript comma denotes the partial differentiation
with respect to the coordinates. In this expression, the
function !�r; �� only appears. Therefore, we find that
solutions for !�r; �� should have the functional form

 !�r; �� �
$�r�

sin2�
; (9)

where $ is a function of r only. While !�r; �� is singular
on the rotation axis (� � 0 and �), the metric is regular at
least up to the first order, because gt� � �r2$�r� �
O�
2�. Note that gt� does not vanish on the rotation axis
unless $�r� is identically zero. This means that the shift
vector Ni � gti�i � r; �; �� defined in the (3� 1) formal-
ism [17] is singular on the rotation axis. It should also be
noted that this result is independent of a choice of the
embedding coordinate v�.

A. Linear perturbation equations and the metric
solution for timelike v�

We adopt a timelike vector for v�, i.e., v� �
�1=�0; 0; 0; 0�, which is derived from # � t=�0. In our
universe, there exists the frame of reference in which the
CMB radiation can be seen as an isothermal distribution
except for small fluctuations. The frame of reference is
specified by a timelike vector. Such a timelike vector is a
candidate for the timelike vector v�.

From the (tt), (rr), (r�), (r�), (��), (��), and (��)-
components of Eq. (3), we can obtain homogeneous dif-
ferential equations for the functions h,m, and k. Hence, the
homogeneous differential equations have a simple solution
of h�r; �� � m�r; �� � k�r; �� � 0. These differential
equations are completely decoupled from the function !.
Since we are now interested in the rotation of the black
hole, i.e., the function !, we do not seek any other solu-
tions for the functions h, m, and k. From the (tr), (t�), and
�t��-components of Eq. (3), we obtain the equations for!

 

0 � !;��� � r�r� 2M�!;rr� � 2r�r� 2M� cot�!;rr

� 5 cot�!;�� � 2�2r� 5M�!;r�

� 4�2r� 5M� cot�!;r � 3�cot2�� 1�!;�; (10)

 

0 � r2�r� 2M�!;rrr � r!;r�� � 3r cot�!;r�

� 6r�r� 2M�!;rr � 4�r� 3M�!;r; (11)

 0 � r�r� 2M�!;rr � 4�r� 2M�!;r �!;�� � 3 cot�!;�:

(12)

Here, Eqs. (10) and (11) are obtained, respectively, only
from the nonvanishing (tr) and (t�)-components of the
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Cotton tensor, and Eq. (12) is obtained only from the (t�)-
component of the Einstein tensor. Note that these equations
do not include �0. This is due to a shortcoming of the first-
order perturbation method.

From the result of Eq. (9), Eq. (10) is automatically
satisfied. From Eqs. (11) and (12), we obtain the differen-
tial equations for $�r�, respectively,

 r2$000 � 6r$00 � 6$0 � 0; (13)

 r�r� 2M�$00 � 4�r� 2M�$0 � 2$ � 0; (14)

where a prime denotes the differentiation with respect to
the coordinate r. The solution of Eq. (13) is given by

 $ � C0 �
C1

r
�
C2

r2 ; (15)

where C0, C1, and C2 are constants of integration. On the
other hand, the solution of Eq. (14) is given by
 

$ � D1
r� 2M

r3 �
D2

r3 �r
2 � 2Mr� 4M2 � 4M�r� 2M�

� ln�r� 2M�	; (16)

where D1 and D2 are constants of integration. Thus, the
solution that satisfies both differential equations (13) and
(14) is given only by $�r� � 0. Therefore, we conclude
that within the framework of the first-order perturbation,

the black hole cannot rotate in the Chern-Simons modified
gravity for the timelike vector.

However, in the limit of M=r! 0, the derivative of
Eq. (14) coincides with Eq. (13). Hence, the solution

 $ �
C1

r
�
C2

r2 ; (17)

i.e.,

 gt� � ��C1r� C2�; (18)

is permitted in this limit. Since the metric component gt� is
proportional to r at infinity, the frame-dragging effect of
this solution works in the whole space.

B. Linear perturbation equations and the metric
solution for spacelike v�

Next we take another choice of # � r cos�=
0.
This provides a spacelike vector v� � �0; cos�=
0;
�r sin�=
0; 0�, which becomes a unit vector parallel to
the rotation axis at infinity. The discrepancy between the
observational result and the theoretical prediction in the
quadrupole moment of the CMB anisotropy may imply the
existence of such a spacelike vector [18].

From the (tt), (t�), (rr), (r�) (��), and (��)-
components of the field equation, we obtain the nonvanish-
ing equations, respectively,

 2r�r� 2M�k;rr � 2�r� 2M�m;r � 2�3r� 5M�k;r � k;�� � cot�k;� �m;�� � cot�m;� � 2k� 2m

� �
1


0�r� 2M�
�r2�r� 2M�2$000 � r�r� 2M��6r� 11M�$00 � 2�r� 2M��3r� 2M�$0 � 2M$	; (19)

 

1

sin2�
�r�r� 2M�$00 � 4�r� 2M�$0 � 2$	

� �
1

2
0r
3 ��r�r� 2M�2�rh;rrr � cot�h;rr�� � r�r� 2M�2�rk;rrr � cot�k;rr�� � r�r� 2M��h;r�� � k;r���

� �r� 2M� cot��h;��� � k;���� � r�r� 2M�f�2r�M�h;rr � �r� 3M�m;rr � �3r� 2M�k;rrg

� �r� 2M� cot�f�3r�M�h;r� � �3r� 2M�k;r� � 3Mm;r�g � �2r� 5M�h;�� � �r� 3M�m;�� � �r� 2M�k;��

� �r� 2M�cot2��h;�� � k;��� � �2r2 � 9Mr� 10M2�h;r � 9M�r� 2M�m;r

� 2�r2 � 9Mr� 14M2�k;r � 3�r� 3M� cot��h;� �m;�� � �r� 2M�cot3��h;� � k;�� � 2�r� 2M��m� k�	;

(20)

 �r� 2M��h;�� � cot�h;� � k;�� � cot�k;� � 2�r� 2M��h;r � k;r� � 2�k�m�	

�
r� 3M

0

�r�r� 2M�$00 � 4�r� 2M�$0 � 2$	; (21)

 r�r� 2M��h;r� � k;r�� � �r� 3M�h;� � �r�M�m;� � �
r cot�

0
�r�r� 2M�$00 � 4�r� 2M�$0 � 2$	; (22)
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 r�r� 2M��h;rr � k;rr� � �r�M�h;r � 2�r�M�k;r � �r�M�m;r � cot��h;� � k;��

�
cot2�

0
�r�r� 2M�$00 � 4�r� 2M�$0 � 2$	; (23)

 r�r� 2M��h;rr � k;rr� � h;�� �m;�� � �r�M�h;r � 2�r�M�k;r � �r�M�m;r

� �
1


0sin2�
�r�r� 2M�$00 � 4�r� 2M�$0 � 2$� rfr�r� 2M�$000 � 2�3r� 5M�$00 � 6$0gsin2�	: (24)

While the right-hand side of Eq. (22) has the zenith-angle
dependence of cot�, the left-hand side is composed of the
first-order derivatives of h,m, and kwith respect to �. Thus
the solution has the form of �h;m; k� / ln�sin��. However,
these functions become singular along the rotation axis.
Hence, the zenith-angle dependence of the functions h, m,
and k should vanish, and therefore these functions depend
on r only. On the other hand, this result, i.e., h � h�r�,m �
m�r�, and k � k�r�, conflicts with Eq. (23), since the left-
hand side becomes a function of r only, and the right-hand
side has the dependence of cot2�. Therefore, the functions
h, m, and k should vanish. Then, we derive the differential
equations
 

0 � r2�r� 2M�2$000 � r�r� 2M��6r� 11M�$00

� 2�r� 2M��3r� 2M�$0 � 2M$; (25)

 0 � r�r� 2M�$00 � 4�r� 2M�$0 � 2$; (26)

 0 � r�r� 2M�$000 � 2�3r� 5M�$00 � 6$0: (27)

Equations (25) and (27) can be derived consistently from
Eq. (26). Thus the equation that we have to solve is
Eq. (26). In the same way as the case for the timelike
v�, the differential equation does not include the parame-
ter 
0. The solution of Eq. (26) is given by the same
expression as Eq. (16), which leads to
 

gt� � ~D1
r� 2M

r
�

~D2

r
�r2 � 2Mr� 4M2

� 4M�r� 2M� ln�r� 2M�	; (28)

where ~D1 and ~D2 are constants. Therefore, for the space-
like vector v�, the spacetime rotation is permitted for any
value of the black hole mass. However, if ~D2 � 0, then the
frame-dragging effect extends to infinity, because the sec-
ond term in Eq. (28) diverges as r increases. Furthermore,
the result of Eq. (28) means that the above-mentioned
string singularity of the shift vector Ni extends to infinity
even if ~D2 � 0.

IV. SUMMARY

We have investigated the rotation of a black hole in the
Chern-Simons modified gravity theory. In particular, we
have considered slow rotation of a black hole using the
perturbation method, in which the Schwarzschild solution
was taken to be the background. From the constraint
equation, we obtained the zenith-angle dependence of the
metric function !�r; �� related to the frame-dragging ef-
fect, independently of a choice of the embedding coordi-
nate v�. Furthermore, by solving the field equation, we
found that the black hole cannot rotate for the timelike
vector v� at least within the framework of the first-order
perturbation method. However, in the limit of M=r! 0,
the spacetime rotation is permitted, whose frame-dragging
effect extends to infinity. In contrast, for the spacelike
vector v�, the spacetime rotation is permitted for any value
of the black hole mass. Its frame-dragging effect also
extends to infinity. Therefore, it is still an open question
which form of the metric corresponds to the Kerr solution,
which reduces to the Minkowski metric at infinity.
Derivation of exact solutions for stationary, axisymmetric
spacetimes in the Chern-Simons modified gravity theory
may solve this problem. Then, we could also understand
effects of the parameter �0 or 
0, which appears in the
Chern-Simons term, on the black hole physics. The deri-
vation of exact solutions will be a future work.
Furthermore, it should be noted that the above-mentioned
results might be modified by the extension of the theory in
which # in the Chern-Simons term is taken to be a dy-
namical variable. This will also be discussed elsewhere.
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