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We are responding to the Comment by J. Wezel on our paper. This study was developed from our previous work
[Ishioka et al., Phys. Rev. Lett. 105, 176401 (2010)]. In the PRL paper, Hcpw was defined as a new parameter
for expressing CDW chirality for the first time. In his Comment, he claims that Hcpw is ill defined. He also
claims that the initial phase ¢ of the CDW wave function is a more appropriate parameter for expressing chiral
CDW, despite our early introduction of ¢ to explain the experimental data described in the PRL paper. However,
we conclude that Hepw can distinguish the CDW chirality by its sign. Moreover, by considering different Hepw
signs, we had succeeded in demonstrating the difference of the spatial distributions of CDWs as shown in Fig. 4
of the PRB paper [Phys. Rev. B 84, 245125 (2011)]. In our Reply, we discuss the validity of Hcpw. We show
that his argument regarding the identification of the CDW with the opposite sign of ¢ is wrong, since the logic
is inapplicable to a wave function with a nonzero ¢. We also discuss the applicability of Hcpw to two- or

three-dimensional CDWs in transition metal dichalcogenides.
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I. INTRODUCTION

As we reported in our PRL study,1 in 1T-TiSe, we
discovered chiral charge density waves (CDWs) for the first
time by observing two-fold optical reflection and by detecting
different CDW intensities for the g vectors of three CDWs.
To explain the experimental results we introduced nonzero
relative phases between three CDW wave functions. Right-
and left-handed charge distributions in real space can be
reproduced by choosing relevant phase differences. Moreover,
to give the CDW chirality more generality, we focused on
three-dimensional CDW ¢ vectors and defined the CDW
chirality as

Hepw = q1- (2 X q3), (1)

where ¢q1, ¢q2, and g3 are CDWs ¢ vectors connecting Fermi
pockets from I' to L in the first Brillouin zone of 1T-TiSe;.
When ¢;, q2, and g3 do not exist in one plane, Hcpw has
a nonzero value in the same way that cholesteric liquid
crystals have a nonzero value of f n-(V xn)dV, where n
is a director.” In spin systems, a similar form of scalar triple
product of spins has been proposed as a chiral order parameter.’
Since the mathematical form is the same, the introduction of
Hcpw as a new measure is quite natural. As a measure for
expressing the property of the entire space, it is highly intuitive
to use a pseudoscalar.

In his Comment,* Wezel abandoned the Hcpw for the first
time from the point of view that each ¢ vector has invariance
when translated by reciprocal lattice vectors so that the sign
of the Hcpw changes arbitrarily. He insists that Hcpw has no
physical meaning. However, we do not agree with this claim
because this argument is not made for the identical initial
phases of the three CDW wave functions.
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II. FORBIDDEN OPERATION TO
SPACE WITH CHIRALITY

In the first place, no arbitrary axis inversion can preserve an
entire system that does not have mirror inversion symmetry.
Let us consider a die representing systems without inversion
symmetry. As shown in Fig. 1(a), we define each axis and
assume a die. When we look at the 1, 2, and 3 faces of
the die, they are located counter clockwise [Fig. 1(a)]. If
the x axis is inverted, the arrangement of the 1, 2, and 3
faces becomes clockwise. The dice before and after axis
inversion are not identical, that is the whole system changes in
terms of chirality. The system with x- and y-axis inversion
is the same as the original die [Fig. 1(c)]. As shown in
Fig. 1(d), whole axis inversion changes the die’s chirality.
Therefore, as the property of the three-dimensional spaces,
arbitrary axis inversion, namely mirror operation, inverts the
entire space. In the same manner, when the pseudoscalar
is defined, its sign should be changed by any mirror
operation.

In general, a scalar triple product depends on the directions
of triple g vectors. When there are three vectors, mirror
inversion must make at least one vector inversion. On the
other hand, in the PRB argument,5 mirror inversion operation
corresponds to the inversion of all three g vectors, when the
mirror plane is perpendicular to the ¢* axis. Because three
vectors are inverted by mirror inversion, the scalar triple
product of those vectors must change. When each vector
characterizes the lattice structure, the whole lattice structure
should be inverted in accordance with the vector inversion.
Therefore, Hcpw reflects the chirality of the CDW structure.
Indeed, the Hcpw value also changes from —afi/g a26c]f/§'
The Hcpw change corresponds to the handedness of the
states.

©2012 American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.105.176401
http://dx.doi.org/10.1103/PhysRevB.84.245125
http://dx.doi.org/10.1103/PhysRevB.86.247102

COMMENTS

(a) (b) © )
q U B u « @ 0@“0
o . 0 - 0. 00°%
00 Jo%%0g o0 00y
) 0 ) X
g yA
z xmY S =X

FIG. 1. (Color online) Schematic images of dice with (a) original
structure, (b) x axis inverted, (c) x and y axis inverted and (d) x, y,
and z axis inverted. The 1, 2, and 3 faces are shown at the bottom of
each image.

III. CONCEPTUAL INCLUSION OF THE INITIAL PHASE
DIFFERENCES BY Hcpw

The concept of the Hcpw includes the relative phase of the
wave functions. Wezel’s main claim is based on the invariance
under the translation of each g vector. However, we think that
the invariance of ¢ is not demonstrated properly because he
ignores the phase differences of each CDW although he insists
on ¢ as an alternative. Within the very specific condition of ¢ =
0 or 7, the wave function with g is equal to that with —g. On the
other hand, phase differences with more general values have
been introduced to explain the experimental results as dis-
cussed in Ref. 1. The wave functions of CDW are expressed as

p = Acos(qr +¢) 2

and
o = Acos(—gr + ¢), 3

where o’ is different from p with respect to the position of
the charge density peaks. Therefore, a total configuration
constructed with three CDW components of —g; should differ
from that with ¢; (i = 1,2,3). Since the formalization of the
wave function*® given by his results in a cosine type function,
the above discussion can be applied to his discussion.

Returning to Wezel’s claim, our discussion of the PRB
paper is based on the fact mentioned above. In the numerical
calculations shown in Fig. 4 in PRB® we first assume a
set of three CDW waves and locally induced waves. Local
chiral inversion was induced by the ¢ inversion of only local
components, and the two different states before and after g
inversion were compared. If the invariance of ¢ under arbitrary
a* remains with a nonzero ¢ as he insists, the spatial charge
distribution of the two states must be the same. However, in
three-dimensional spaces, there is no condition satisfying this.
On the other hand, our calculation succeeded in showing the
local chiral inversion by ¢ inversion as the local modulation
of the spatial distribution of the charge density. Therefore,
in our research Hcpw clearly distinguishes two states with
different chiralities.
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He focuses solely on the phase difference between three
CDWs. He also insists that the sign of ¢ corresponds to the
chirality of the ground states. We agree with the correspon-
dence, because the change in the sign of ¢ corresponds to the
change in the sign of the g vector, that is,

p" = Acos[gr + (—¢)] = A cos[—(gr + (—¢))]
= Acos[—qr +¢]=p. 4)

So the chiral inversion could be expressed both by the phase
difference and the g vectors. It is also possible to simulate
the same calculation in Ref. 5 by changing signs of ¢;.
To avoid any reader’s confusion about our previous study,'
we did not change the phases when all the ¢ values were
inverted in PRB.> Although ¢; is nonzero value, ¢; cannot
distinguish whether CDW is polar’ or chiral. A nonzero Hcpw
clearly distinguishes tilted g vectors from in-plane g vectors.
Therefore, we think the concept of Hcpw includes the sign of
the phase ¢ so that Hcpw is a more sophisticated concept than
¢ for expressing chiral states.

IV. DIFFERENT APPROACHES TOWARDS
THE SAME PHENOMENA

Regarding the paper on which Wezel’s work was based,® we
recognize it for its meaningful suggestion of the chiral state of
CDWs based on a theoretical calculation of GL free energy.®
This work strengthens our belief in the existence of chiral
CDWs because it provides multiple explanations. However, to
avoid confusing the readers, he should clarify the postulate of
the theoretical analysis, which differs from that in our paper
in PRL.! Based on experimental fact, we first fixed the phase
difference between CDWs and then constructed Hepw with ¢
vectors. In this sense, the phase difference is a postulate for
expressing chirality. On the other hand, he constructs GL free
energy with ¢ as a variable and then calculates ¢ to minimize
the total energy.® The calculation finally provides the nonzero
phase differences of each CDW. Although different approaches
were used, consistent results have been obtained in terms of
chirality.

V. CONCLUSION AND REMARKS

In conclusion, we think that Hcpw is closely linked with
the sign of the phase differences. It is quite difficult to directly
detect phase differences. In contrast, Hcpw is highly intuitive
to predict whether CDW have chirality by knowing the CDW
q vectors. It will be used as a discriminant for chiral CDWs
by testing whether Hcpw can be (—,0,4). —, 0, and +
corresponds to left-handed chiral CDWs, nonchiral CDWs,
and right-handed chiral CDWs, respectively.

Researchers have found magnetochiral anisotropy in the
electric conductivity of carbon nanotubes and physically
twisted metal wires.®® This anisotropy depends on the struc-
tural chirality of each system. We expect a discussion to
begin on a similar effect on chiral CDWs. When several
systems show chiral CDWs and chiral properties, we believe
Hcpw is more appropriate than just ¢ for discussing each
effect universally because Hcpw directly reflects the structural
characteristics including the size of the CDW superlattice.
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