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We investigate the spacetime of a slowly rotating black hole in the Chern-Simons modified gravity. The

long range feature of frame-dragging effect under the Chern-Simon gravity well explains the flat rotation

curves of galaxies which is a central evidence of dark matter. Our solution provides a different scenario of

rotating space from Gödel’s solution.
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I. INTRODUCTION

There are three fundamental unsolved issues in the
theory of gravity: quantization of gravity, dark energy,
and dark matter. The string theory [1] is a promising
candidate for a consistent quantum theory of gravity.
Many attempts in quantizing gravity, however, have not
been successful. In astronomy/astrophysics, a number of
observations suggest the existence of dark energy [2,3] and
dark matter [3,4]. Although many surveys of astrophysical
objects have been conducted [5], it has not yet been re-
vealed what is dark matter. For instance, the flat rotation
curves of galaxies [6] have been considered to be a robust
evidence of dark matter. The velocity v of a star orbiting
around the center of a galaxy becomes a constant at a
certain distance r far from the center. While the
Newtonian gravity yields a relation v / 1=

ffiffiffi
r

p
. At present,

we usually attribute the discrepancy to dark matter.
However it may be still possible to explain the phenome-
non based on a theory without dark matter. In this paper, we
propose a model to solve this discrepancy in the framework
of the Chern-Simons (CS) gravity.

The CS action [see Eq. (1)]is a universal entity obtained
from an effective action in the string theory [1,7]. In fact,
the action also appears in condensed matter physics such as
the quantum Hall effect [8,9]. Deser et al. [10] originally
constructed a theory of CS gravity in (2þ 1) dimensions
and recently Jackiw and Pi extended it to (3þ 1) dimen-
sions [11]. Several important consequences of the CS
action have been discussed in theories of gravity [7,12–
14]. In connection with this study, we summarize two
important features of the CS gravity as follows. First, the
Schwarzschild solution satisfies the field equation of CS
gravity, which indicates that the CS theory meets a require-
ment of classical tests for general relativity [15]. Second,
generally speaking, the CS term enhances angular velocity
or angular momentum. In other words, the CS term rather
modifies the gravitomagnetic part of the gravitational field
than the gravitoelectric part [16]. These facts imply that CS

gravity may behave as if dark matter exists, which moti-
vated this study.
In this paper, we study a solution for a slowly rotating

black hole in the CS gravity based on a previous work [13].
The frame-dragging effect turns out to be significantly
large in a region far from the gravitational source. As a
consequence, the obtained solution explains the flat rota-
tion curves of a galaxy. By analyzing the frame-dragging
effect on precession of a spinning object, we also discuss a
way to confirm the CS gravity in observations. This paper
indicates a route connecting the quantum theory of gravity
with the dark matter problem. Hereafter, we use the geo-
metrized units with c ¼ G ¼ 1.

II. CS GRAVITY

We briefly review a theory of the CS modified gravity
[11]. The action in this paper is given by the Einstein-
Hilbert action and the CS one,

I ¼ 1

16�

Z
d4x

�
� ffiffiffiffiffiffiffi�gp

Rþ 1

4
l#�R����R����

�
; (1)

where g is the determinant of the metric, R � g��R���� is

the Ricci scalar, R���� � @��
�
�� � � � � is the Riemann

tensor (���	 is the Christoffel symbols), l is a coupling

constant, and # is an external quantity. The dual Riemann
tensor density is defined by �R���� � 1

2"
����R����,

where "���� is the Levi-Civita tensor density of weight
one. The variation of the action with respect to g�� gives a

field equation

G�� þ lC�� ¼ �8�T��; (2)

where G�� is the Einstein tensor, T�� is the energy-
momentum tensor, and C�� is the Cotton tensor defined as

C�� ¼ � 1

2
ffiffiffiffiffiffiffi�gp ½v�ð"����r�R

�
� þ "����r�R

�
�Þ

þ ðr�v�Þð�R���� þ �R����Þ�: (3)

Here, v� � @�# is called an embedding vector. In this
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0 ¼ r�C
�� ¼ 1

8
ffiffiffiffiffiffiffi�gp v��R����R���� (4)

should be imposed to ensure the diffeomorphism invari-
ance. This condition is derived by using the Bianchi iden-
tity r�G

�� ¼ 0 and the equation of motion r�T
�� ¼ 0.

Equations (2) and (4) are basic equations in the CS gravity.
In the previous work [13], we obtained a solution of

Eqs. (2) and (4) for a slowly rotating black hole by using
the perturbation expansion around the Schwarzschild so-
lution. In this paper, we particularly concentrate our atten-
tion on the case of a spacelike vector
v� ¼ @�# ¼ @�z ¼ @�ðr cos
Þ ¼ ð0; cos
;�r sin
; 0Þ.
The metric is provided by

ds2 ¼ �
�
1� 2M

r

�
dt2 þ

�
1� 2M

r

��1
dr2

þ r2ðd
2 þ sin2
d�2Þ � 2r2!ðrÞdtd�; (5)

where M is mass of a black hole, the 
 dependence of the
(t�) component is restricted by Eq. (4), and

! ¼ C1

r2

�
1� 2M

r

�
þ C2

r3
½r2 � 2Mr� 4M2

þ 4Mðr� 2MÞ lnðr� 2MÞ�: (6)

Here,C1 andC2 are constants characterizing the rotation of
a black hole and are related to a small parameter �ð�
J=MrÞ, i.e., C1, C2 �Oð�Þ, where J is the angular mo-
mentum. This solution satisfies both Eqs. (2) and (4) up to
the first order in �. Within the first order of �, the solution
does not depend on l. The differential equation for ! can
be obtained from the nonvanishing components of the field
equation. In the (t�) component, the Einstein tensor gives
the differential equation, whereas the Cotton tensor van-
ishes. In contrast in other components, the Einstein tensor
vanishes, and the Cotton tensor gives the same differential
equation. Therefore, Eq. (6) is also a solution in general
relativity. We emphasis that the Kerr solution does not
satisfy Eq. (4), which is an important difference between
the Einstein gravity and the CS gravity.

Here we briefly mention a relation between the original
CS gravity and the string theory. In the original CS gravity,
Eq. (4) is imposed to ensure the diffeomorphism invari-
ance. As shown in Ref. [7], # in Eq. (1) is not an external
quantity but a dynamical variable in the framework of
string theory. Therefore Eq. (4) is replaced by the field
equation [7]

g��r�r�# ¼ � l

64�
ffiffiffiffiffiffiffi�gp �R����R���� (7)

in the string theory. When l is a nonvanishing value and #
is a constant, Eqs. (2) and (7), respectively, reduce to
G�� ¼ 0 and �R����R���� ¼ 0 in a vacuum. We empha-

sis that our solution in Eqs. (5) and (6) also satisfies these
equations. Thus Eqs. (5) and (6) describe a classical field

which includes effects of quantum gravity. Furthermore,
we need not to align the rotational axis with the embedding
vector in this case because of v� ¼ 0. Hereafter we con-
sider Eq. (7) rather than Eq. (4) because Eq. (7) makes the
CS theory self-consistent.

III. FEATURES OF SOLUTION

We look into a solution of the spacetime of a slowly
rotating black hole. For this purpose, we consider a scalar
invariant R��	
R��	
 which is useful to evaluate the radial

dependence of the frame-dragging effect. From the metric,
the scalar invariant at large r is obtained in the form

R��	
R��	
 ¼ ðRð0Þ��	
 þ Rð1Þ��	
ÞðRð0Þ
��	


þ Rð1Þ
��	
Þ

’ 48M2

r6
� 4C2

2

r4sin4

; (8)

where ‘‘(0)’’ and ‘‘(1)’’ denote the zeroth and the first order
in �, respectively. The first term stems from the
Schwarzschild solution, and the second term corresponds
to the rotation of a black hole. For 
 � 0, �, the scalar
invariant asymptotically reduces to zero at large r. As a
consequence, the spacetime becomes asymptotically flat at
infinity. The singularity of the rotational axis could be
avoided by finding nonlinear or exact solutions. We note
that the frame-dragging part proportional to r�4 decays
more slowly than the Schwarzschild part proportional to
r�6. On the derivation of our metric solution we use the
absence of the Chern-Pontryagin density �R����R����
which is a source of gravitational anomaly [17]. Thus the
absence of gravitational anomaly gives the long range
nature of the frame-dragging effect. For comparison, we
recall the Kerr metric whose (t�) component at large r is

given by gðKÞt� ¼ �2J0sin
2
=r, where J0 �Oð�Þ is the

angular momentum. For this metric, we obtain

RðKÞ
��	
RðKÞ��	
 ’ 48M2

r6
� 144J20

r8
ð2þ cos2
Þ: (9)

Thus the Kerr metric gives rise to the rapid decay of the
frame-dragging part because the second term is propor-
tional to r�8.

IV. TRAJECTORIES OFATEST PARTICLE

To show more astrophysical consequences of the solu-
tion, we investigate trajectories of a test particle with a
mass of m. Since the metric does not depend on t and �,
the t and � components of four-momentum p� are con-

served for the particle [18]. Hence, it can be assumed that
p0 ¼ �mE and p� ¼ mL, where E and L are the energy

and angular momentum of the particle, respectively. We
focus on trajectories in the equatorial plane (
 ¼ �=2).
From g��p

�p� ¼ �m2, we obtain
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�
dr

d�

�
2 ¼ E2 �

�
1� 2M

r

��
1þ L2

r2

�
� 2EL!ðrÞ; (10)

where � is a proper time. Differentiating this equation with
respect to �, we derive

d2r

d�2
¼ � 1

2

d

dr

��
1� 2M

r

��
1þ L2

r2

��
� EL!0ðrÞ; (11)

with !0 � d!=dr. These equations can be solved pertur-
batively because the last terms on the right-hand side of
Eqs. (10) and (11) are small compared with the other terms,
i.e., !, !0 �Oð�Þ.

We solve Eqs. (10) and (11) up to the first order in � for
circular orbits (r ¼ const). The solutions are then given by

E ¼ r� 2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðr� 3MÞp

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

r� 3M

s �
r!ðrÞ þ r2ðr� 2MÞ

2ðr� 3MÞ !
0ðrÞ

�
; (12)

L ¼ �r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

r� 3M

s
þ r4ðr� 2MÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðr� 3MÞ3p !0ðrÞ: (13)

Using these quantities, we can calculate d�=dt ¼
ðdt=d�Þ�1d�=d� for circular orbits. The circular velocity
is then obtained as

v ¼ r
d�

dt
¼ �

ffiffiffiffiffi
M

r

s
þ

�
r!ðrÞ þ r2

2
!0ðrÞ

�
: (14)

This is the central result of this paper. The first term, which
is a monotonically decreasing function proportional to

r�1=2, is coming from the Schwarzschild metric. It is
very surprising that the second term becomes a constant
at large r, i.e.,

v ’ �
ffiffiffiffiffi
M

r

s
þ C2

2
: (15)

Therefore, the same feature can be expected in the rotation
curves of galaxies. On the other hand in the case of the Kerr
solution, the frame-dragging part is negligible at large r

because vðKÞ ’ � ffiffiffiffiffiffiffiffiffiffi
M=r

p � J0=r
2 is derived. In a galaxy,

there are a bulge and a disk associated with the central
black hole. For the spherically symmetric part such as a
bulge, an outside spacetime solution has the same form as
that of our solution. The nonspherical part such as a disk
would deform the solution in the direction of the rotational
axis. Thus the feature of the flat rotation curve is consid-
ered to remain unchanged on the equatorial plane.

At first glance, the constant circular velocity v at infinity
seems to contradict the asymptotically flat spacetime. This,
however, is explained as follows. It is impossible to cover
the spatial infinity by a single Minkowski spacetime. To do

so, a number of Minkowski spacetimes are necessary. It is
possible to consider that the spatial infinity is covered by
several finite-size areas and that each area is covered by a
Minkowski spacetime. In such a situation, two adjacent
areas are smoothly connected with each other by virtue of
the infinitesimal curvature which is given by the second
term of Eq. (8). This situation is similar to that for a vector
potential field created by a solenoid with magnetic flux �.
For a certain gauge, the vector potential has the form Ai ¼
ð�=2�Þð�y=ðx2 þ y2Þ; x=ðx2 þ y2Þ; 0Þ, where i represents
spatial indexes. [This is very similar to Eq. (17) below.] If
the exact form Aidx

i � da is considered, any function for
a cannot cover the whole space. Because of this fact, the
loop integral of Ai can give the nonzero value �, i.e.,H
Aidx

i ¼ H
da ¼ �.

The angular momentum of the Kerr black hole does not
depend on choices of a two-surface within the definition of
J ¼ R ffiffiffiffiffiffiffi�gp

"��
�r� �d
d�=16� [19], where  � ¼
ð0; 0; 0; 1Þ is the Killing vector. When we evaluate the
angular momentum of a black hole in Eqs. (5) and (6) by
using the same definition, the angular momentum depends
not only on C1 and C2 but also on r. This means that the
gravitational field also has the angular momentum whose
degree is given by C1 and C2. It should also be noted that
such a situation is a result of # ¼ const in Eq. (7). When #
is changed from a constant at large r, the frame-dragging
effect would also be modified. In particular, when
�R����R���� � 0 in Eq. (7), the solution of Eq. (2) may

have the same feature as that of the Kerr solution.

V. PRECESSION OF SPINNING OBJECTS

We discuss a way to confirm the CS gravity through the
precession of spinning objects. To discuss the precession of
spinning objects, we first adopt the isotropic form of the
metric derived from the transformation, ðx; y; zÞ ¼
ð~r sin
 cos�; ~r sin
 sin�; ~r cos
Þ, where r ¼ ~rð1þ
M=2~rÞ2. Then we apply the weak field approximation to
discuss more accessible situations. Namely the post-
Newtonian approximation is applied to the diagonal com-
ponents of the metric and the leading term at large r is
considered in the off diagonal components gti. We obtain

ds2 ’ �ð1� 2UÞdt2 þ ð1þ 2UÞðdx2 þ dy2 þ dz2Þ
þ 2Nð1Þ

i ðx; y; zÞdxidt; (16)

where U ¼ M=r, and Nð1Þ
i is given by

Nð1Þ
i ¼

�
C2

y~r

x2 þ y2
;�C2

x~r

x2 þ y2
; 0

�
: (17)

By using the Minkowski metric ���, we define h�� �
g�� � ���. It is shown that h�� satisfies the Lorentz gauge

condition @�h
�
� � @�h

�
�=2 ¼ 0 under Eq. (16). In a

local Lorentz frame momentarily comoving with a spin-
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ning object, the spin obeys an equation dSðiÞ=d� ¼
S�u

�r�e
�
ðiÞ, where e�ð�Þ denotes the tetrad and SðiÞ ¼

e�ðiÞS� is the spin vector [15]. The four velocity of the

spinning object u� ¼ e
�
ð0Þ is approximated as u� ’

ð1; vkÞ. In the weak field approximation in Eq, (16), the

equation becomes dS=d� ¼ �� S, where � ¼ �ðv�
aÞ=2þ 3ðv�rUÞ=2� ðr�Nð1ÞÞ=2 and a denotes the
acceleration vector. This equation seems to have the same
form as that obtained under the Kerr solution. The last term
of �, however, has a different form. We obtain

� N ¼
�
�C2

2

xz

ðx2 þ y2Þ~r ;�
C2

2

yz

ðx2 þ y2Þ~r ;
C2

2~r

�
(18)

for our solution and

� ðKÞ
N ’

�
3J0xz

~r5
;
3J0yz

~r5
;
J0½2z2 � ðx2 þ y2Þ�

~r5

�
; (19)

for the Kerr solution. For large r, Eq. (18) is proportional to
r�1, whereas Eq. (19) decays as r�3. This qualitative
difference can be measured from the radial dependence
of the spin precession. For such verification, observations
should be done for spinning objects far from a black hole.
Thus C2 can be estimated from observed data according to
Eq. (18).

VI. DISCUSSION

The whole universe given by Eqs. (5) and (6) slightly
rotates. However, it is difficult to observe the rotation at
infinity because the angular displacement of objects de-
creases proportional to 1=rwith increasing r. The behavior
of our solution at infinity is in contrast to Gödel’s solution
[20] in the Einstein theory. Equations (5) and (6) also mean
that a galaxy is affected by the frame-dragging pull of
another galaxy. Thus we should observe the correlation
between the rotational velocity in a galaxy and the peculiar
velocities of other galaxies to confirm the frame-dragging
effect. It would be possible to estimate C2 from analysis of
the correlation. By now, unfortunately, a few studies have
been made on this correlation. The frame-dragging effect
might explain another evidences of dark matter, i.e., large
velocity dispersion of galaxies in clusters [4]. The velocity

dispersion in interacting galaxies may be expected to be
larger than that in the Newtonian picture. Future investi-
gation for cosmological density perturbation in this direc-
tion is necessary.
We remark the difference between our theory and the

other modified gravity theories. The modified Newtonian
dynamics [21] certainly describe the flat rotation curves.
However, The modified Newtonian dynamics are entirely
phenomenological and not supported by a recent experi-
ment [22]. Similarly, the f(R) gravity is phenomenological
in practice [23]. On the other hand, the CS gravity is
directly related to an essential part in the string theory,
and our results are basically parameter free. Therefore, our
theory should be distinguished from the other theories.

VII. CONCLUSION

We have investigated features of the spacetime endowed
with a slowly rotating black hole within the framework of
the Chern-Simons (CS) gravity. We found that the CS
gravity enhances the gravitomagnetic part of the gravita-
tional field far from a black hole. As a consequence, the
velocity of a test particle in a circular orbit surprisingly
becomes a constant far from a black hole as it was found in
a galaxy’s rotation curve. Thus the result explains a robust
evidence of dark matter without introducing realistic mat-
ter. Our finding indicates a possibility to solve the dark
matter problem by a new theoretical framework of the CS
gravity. To confirm the validity of this approach, we need to
explain other evidences of dark matter such as large ve-
locity dispersion of galaxies in cluster and structure for-
mation in the Universe. Further investigation in this
direction could bridge the gap between purely theoretical
quantum gravity and more realistic astrophysical
phenomena.
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