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Conformal aspect of charge density waves: Theory and experiment
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The variety of two-dimensional (2D) discommensurate charge density wave (DC-CDW) phases has been
explained by a phenomenological CDW free-energy theory, where the wave vector of different DC-CDW
phases corresponds to different local minima of a multivalley free-energy landscapes. Here, we discover that
experimental 2D DC-CDW structures in transition-metal dichalcogenides can be understood elegantly by a
conformal transformation with complex numbers. Specifically, we represent a 2D CDW wave vector Q by a
complex number Q and find that by minimizing the CDW free energy with respect to Q, different wave vectors
Q and Q′ are connected by a conformal transformation. Consequently,

√
n × √

n (n = 7, 9, 13) honeycomb and
(quasi-)stripe DC-CDWs can be understood using simple conformal groups, which link DC-CDW wave vectors
(multivalley landscape) to the incommensurate and commensurate wave vectors.

DOI: 10.1103/PhysRevB.109.L081407

Introduction. Charge density waves (CDWs) are elec-
tronic crystals that are described by so-called macroscopic
wave functions such as superconductors, superfluids, frac-
tional quantum Hall liquids, etc. [1–3]. Transition-metal
dichalcogenides (MX 2) are layered compounds that induce
typical two-dimensional (2D) CDW phases with wave vec-
tors Q(i) (i = 1, 2, 3) satisfying the triple-Q condition Q(1) +
Q(2) + Q(3) = 0. Such CDW phases include the incommen-
surate (IC) phase, commensurate (C) phase, and CDW phases
with discommensurate (DC) domain walls, such as the nearly
commensurate (NC), stripe [4], and triclinic (T) phases [5,6].
Moreover, other CDW phases are continually being discov-
ered [7–9].

A phenomenological Ginzburg-Landau theory of CDW
phases in MX 2 was introduced by McMillan [10] to explain
the IC to C phase transition and 1D stripe discommensuration.
However, McMillan heuristically included discommensura-
tions, and hence could not correctly explain known CDW
phases [11]. Nakanishi and Shiba extended this free energy
theory to explain the appearance of the NC phase in 1T -TaS2

(
√

13 × √
13 structure) and 2H-TaSe2 (

√
9 × √

9 structure)
using CDW harmonics, where the domain walls and harmonic
wave vectors are all obtained from the fundamental wave
vectors Q(i) [12,13]. In general, the search for CDW free
energy local minima is a difficult task. Some of the present
authors revisited the Nakanishi-Shiba-McMillan models for
monolayer 1T -TaS2 and 2H-TaSe2 and discovered the multi-
valley free-energy landscape, where free energy local minima
correspond to different DC-CDW phases with domain walls
(NC, stripe, and T phases) [14]. The existence of these CDW

*These authors contributed equally to this work.

phases in monolayer MX 2 (pure 2D system) is confirmed both
experimentally [15] and theoretically [14].

Despite the development of CDW free-energy theory,
why such different DC-CDW phases can appear in modern
quantum crystals is still an open question. The reason for
the appearance of various CDW phases is not simply because
there are various magnitudes of nesting vectors Q. For nesting
vectors that happen to be close to the C condition, there
seems to be a law that locks in CDW superlattice to the MX 2

lattice. Within the framework of the Nakanishi-Shiba-
McMillan theory, we reveal that this law is given by a
conformal transformation between DC wave vectors. Here, a
conformal transformation refers to a composition of transla-
tion, rotation, dilation, and inversion [16].

In this paper, we discover that experimental 2D DC-CDW
structures in MX 2 can be explained by a conformal transfor-
mation with complex numbers. Specifically, we represent a
2D CDW wave vector Q by a complex number Q and mini-
mize the phenomenological CDW free energy with respect to
Q, which leads to a multivalley free-energy landscape where
different wave vectors Q and Q′ are connected by a confor-
mal transformation. Consequently, we explain

√
n × √

n (n =
7, 9, 13) honeycomb and (quasi)stripe DC-CDWs using sim-
ple conformal groups, which link DC-CDW wave vectors to
the IC and C wave vectors. Consequently,

√
n × √

n (n =
7, 9, 13) honeycomb and (quasi)stripe DC-CDWs can be ex-
plained beautifully by a discrete conformal transformation
with Eisenstein integers Z[ω]. The CDW phases such as NC,
T, and stripes, which seem to be completely unrelated at first
glance, actually have a common relation linking their Q to
QIC and QC. Then, we apply our conformal method to explain
the origin of an experimental NC phase in TaSe2 thin-film
(
√

7 × √
7 structure).
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FIG. 1. (a) C-CDW superlattice vectors can be represented by Eisenstein integers (this figure shows the
√

13 × √
13 structure with μ = 3

and ν = 1 ). (b) Domain wall wave vectors q(i) are given as deviation from Q(i)
C . (c) CDW harmonics k(i).

The commensurate structure and CDW free energy. First,
we review the C structure and CDW free energy theory in
MX 2. Consider a triangular lattice with primitive lattice vec-
tors a1 = (1, 0)a and a2 = 1

2 (−1,
√

3)a where a = ‖a1‖ =
‖a2‖, ‖ · ‖ represents the norm of a vector. The CDW super-
lattice vector AC of the C phase is defined as [1]

AC = (μ + ν)a1 + νa2, (1)

where μ and ν are positive integers that depend on mate-
rials [e.g., μ = 3 and ν = 1 for the

√
13 × √

13 structure
in 1T -TaS2 as shown in Fig. 1(a)]. Reciprocal lattice vec-
tors b1 and b2 which satisfy ai · b j = 2πδi j (i, j = 1, 2) are
given by b1 = (1, 1/

√
3)/a and b2 = (0, 2/

√
3)/a. ai and

bi are not parallel but are separated by 30◦. However, for
the description of CDW it would be convenient to have a
set of reciprocal lattice vectors Gi which are parallel to ai.
From the threefold rotational symmetry of the system, we
require that G1 and G2 are separated by 120◦ and we also
define a3 = −a1 − a2, G3 = −G1 − G2. The two sets of re-
ciprocal lattice vectors are related by b1 = 2/3(G1 − G3) and
b2 = 2/3(G2 − G3). Gi (i = 1, 2, 3) are normalized by the
condition ai · Gi = 2π . For i �= j, ai and G j are mutually
separated by 120◦, which implies ai · G j = 2π cos(2π/3) =
−π . Consequently, we have the condition ai · G j = 2πδi j −
π (1 − δi j ) = π (3δi j − 1). Then, the wave vector which satis-
fies AC · QC = 2π is defined as

QC = (μ + ν)G1 + νG2

‖AC‖2/a2
, (2)

where ‖AC‖/a =
√

μ2 + μν + ν2. There are actually three
equivalent superlattice vectors A(1)

C , A(2)
C , A(3)

C , which are ro-
tated from AC by 0◦, 120◦, and 240◦, respectively, and three
equivalent wave vectors Q(i)

C , which are defined likewise
(Fig. 1).

We also consider general CDW phases in equilibrium.
MX 2 exhibits three types of isotropic CDW phases, where
each Q(i) is separated by 120◦, namely, the IC, NC, and C
phases. There are also the anisotropic stripe phase [4,17]
and the T phase [5,6]. Q(i)

IC are usually determined by Fermi
surface nesting or van Hove singularity [2,3,18–21], which is
independent of the underlying lattice. On the other hand, Q(i)

C
are determined from lattice symmetry and satisfy Eq. (2). DC
phases between the C phase and the IC phase have domain

walls (discommensurations) that originate from commensura-
bility with the underlying base lattice [10,12,13,22].

Suppose that Q(i)
IC and Q(i)

C are known. The following free
energy, which was originally proposed by McMillan [10],
describes the IC-C phase transition

F =
∫

d2r

{
a(r)α(r)2 − b(r)α(r)3 + c(r)α(r)4

+ d (r)
3∑

i=1

|ψi(r)ψi+1(r)|2 +
3∑

i=1

ψi(r)∗ei(−i∇ )ψi(r)

}
.

(3)

Here, r is the 2D spatial coordinate. The complex order
parameters ψi(r) are related to the charge density ρ(r) =
ρ0(r)[1 + α(r)], where α(r) = Re[ψ1(r) + ψ2(r) + ψ3(r)].
ρ0(r) is the charge density in the normal phase. Each coef-
ficient has periodicity of the MX 2 lattice and is written as
a(r) = a0 + 2a1

∑3
i=1 cos(Gi · r), etc. The third-order term

reflects the triple-Q condition Q(1) + Q(2) + Q(3) = 0. The
constant terms a0, b0, c0, d0 are sufficient to discuss the IC
phase, but the Umklapp terms such as c1 are necessary to
discuss the C phase. For instance, b1 and c1 determine the sta-
bility of the

√
9 × √

9 C phase [13] and the
√

7 × √
7 C phase

(Supplemental Material Note 2 [23]), c1 determines the sta-
bility of the

√
13 × √

13 C phase [12], and so on. Moreover,
ei(Q) = s‖Q − Q(i)

IC‖2/‖Gi‖2, where s is a constant, has been
introduced to determine Q(i)

IC. [Other forms of ei(Q) have also
been proposed, which may be more appropriate in some ex-
periments. See Supplemental Material Note 1 for consistency
with other forms of ei(Q(i) ) [23]]. Surprisingly, it was shown
that the free energy Eq. (3) can also describe the NC phase in
1T -TaS2 using the Nakanishi-Shiba expansion [12,13,24]

ψi(r) =
∑

l,m,n�0
l·m·n=0

	
(i)
lmn exp

{
iQ(i)

lmn · r
}
, (4)

where l, m, n are integers; Q(i)
lmn = Q(i) + lk(i) + mk(i+1) +

nk(i+2), k(i) = μq(i) − νq(i+1) are CDW harmonics; and
q(i) = Q(i) − Q(i)

C are domain-wall wave vectors. The
free energy has been solved numerically by imposing a
cutoff N � l, m, n � 0. N = 0 represents the charge density
modulation by the fundamental wave Q(i). The free-energy
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minimum for the NC phase appears as higher order harmonics
N = 1, 2, 3, . . . are included.

Analytically, Eq. (3) can be integrated using Eq. (4) (see
Supplemental Material Note 2 for a sample calculation, which
is analogous to Refs. [12,13,23,24]). After integration, we
obtain

F =
3∑

i=1

∑
l,m,n�0
l·m·n=0

	
(i)∗
lmn	

(i)
lmnei(Q

(i)
lmn) + · · · , (5)

where the terms in (· · · ) are independent of Q. The free
energy is minimized by the condition

dF =
3∑

i=1

∑
l,m,n�0
l·m·n=0

∂F

∂	
(i)
lmn

d	
(i)
lmn +

3∑
i=1

∇Q(i) F · dQ(i) = 0.

(6)

Regarding different 	
(i)
lmn and Q(i) as independent degrees of

freedom and assuming that 	
(i)
lmn does not explicitly depend on

Q(i), then minimization of F requires us to solve the following
differential equations:

∂F

∂	
(i)
lmn

= 0, (7)

∇Q(i) F = 0. (8)

Equation (7), which contains all coefficients a(r), b(r), . . . ,
ei(Q) in the free energy, leads to an infinite set of nonlinear
differential equations which cannot be solved analytically.
Numerical calculation of 	

(i)
lmn with fixed Q(i) has been done

in our previous study [14], where we unveiled the existence
of the multivalley free-energy landscape in 1T -TaS2 and
2H-TaSe2. On the other hand, we show in the next section that
Eq. (8) can be solved analytically, where the solution is a list
of possible Q vectors of DC-CDW phases.

Conformal aspects of CDW phases. In previous studies of
CDW free energy, the free-energy local minima are obtained
by calculating F for all values of Q(i). However, we observe
that local minima can also be obtained by differentiating F
with respect to Q(i). This major simplification is achieved by
representing CDW vectors using complex numbers.

The correspondence (1, 0) ↔ 1 and (0, 1) ↔ i = √−1
maps a1 and a2 to a and aω, respectively, where ω = e2π i/3 =
− 1

2 +
√

3
2 i. Then, the triangular lattice can be mapped to the

set of Eisenstein integers Z[ω] with elements z = m + nω

(m, n ∈ Z) [25]. Consequently, A(i)
C are equivalent to the

Eisenstein integers [Fig. 1(a)]:

AC = [(μ + ν) + νω]a, A(i)
C = ACωi−1. (9)

Gi are mapped to Gi = 2πa−1ω1−i and AC · QC = 2π cor-
responds to A∗

CQC = 2π where the asterisk denotes complex
conjugation (this correspondence can be formalized, for in-
stance, using 2D Clifford algebra [26]). Consequently, Q(i)

C are
equivalent to

QC = 2π

A∗
C

= G1

μ − νω
, Q(i)

C = QCωi−1, (10)

where we used Eqs. (9) and ω∗ = ω−1 = ω2 = −1 − ω. For
brevity, we set G1 = 1 (i.e., a = 2π ) in the following, which
implies |Gi| = 1 for i = 1, 2, 3.

We also write general CDW wave vectors Q(i) =
(Q(i)

x , Q(i)
y ) using complex wave numbers Q(i) = Q(i)

x + iQ(i)
y .

q(i) and k(i) are also written using complex numbers (Fig. 1)

q(i) = Q(i) − Q(i)
C , k(i) = μq(i) − νq(i+1).

Using complex numbers the gradient ∇(i)
Q is replaced by

∂/∂Q(i)∗, so the CDW wave vectors for local minima between
the C and IC phases are given as solutions of

∂F

∂Q(i)∗ =
3∑

j=1

∑
l,m,n�0
l·m·n=0

|	( j)
lmn|2

∂e j (Q
( j)
lmn)

∂Q(i)∗ = 0, (11)

where

ei(Q) = s
(
Q − Q(i)

IC

)(
Q∗ − Q(i)∗

IC

)
, (12)

Q(i)
lmn = Q(i) + lk(i) + mk(i+1) + nk(i+2). (13)

We solve Eq. (11) for three cases: (i) the isotropic NC phases,
(ii) the T phases, and (iii) the stripe phases.

a. The NC phases. In the case of isotropic NC phases,
we have the following simplification: (i) The wave vectors
are separated by 120◦, which implies Q(i+1) = ωQ(i). Conse-
quently, (ii) the summation in Eq. (4) is a summation over
Eisenstein integers zlmn = l + mω + nω2 (note the identity
ω2 + ω + 1 = 0) and (iii) the CDW harmonics have the sim-
ple expression k(i) = ω(i−1)(Q/QC − 1). Then, Eq. (13) with
Eqs. (10) imply

Q(i)
lmn = Q(i)

Q(1)
C

(
Q(1)

C + zlmn
) − zlmnω

i−1.

Using ∂Q/∂Q∗ = 0, we obtain

∂F

∂Q(i)∗ = s
3∑

j=1

∑
l,m,n�0
l·m·n=0

∣∣	( j)
lmn

∣∣2

×
[

Q( j)

Q(1)
C

(Q(1) + zlmn) − ω j−1
(
Q(1)

IC + zlmn
)]

× ωi− j

Q(1)∗
C

(
Q(1)∗

C + z∗
lmn

)
= 0. (14)

We assume that components with different j values vanish
individually such that the wave vector of the NC phase Q(i)

NC is
given by

Q(i)
NC

Q(i)
C

= f
(
Q(i)

IC

) ≡ Q(i)
IC + zi

Q(i)
C + zi

, (15)
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FIG. 2. (a) CDW local minima of 1T -TaS2 are shown for N = 3 harmonics in units with G1 = 1 (see also Supplemental Material Video
2 for larger N [23]). Different CDW free energy local minima correspond to distinct Eisenstein integers zlmn = l + mω + nω2. The green dot
represents the C phase and the black dots [circles for (d) and (e)] represent local minima. (b) Each local minima is obtained from QIC by the
action of Eq. (17). (c) Successive CDW phase transitions can be explained by a composition of Eq. (17). The local minima in the free-energy
landscape for (d) 1T -TaS2 and (e) 2H -TaSe2 (obtained as in our previous work [14]) agrees with the local minima of Eq. (17). We used
experimental values of wave vectors in (f).

where we defined the complex number

zi =
∑

l,m,n�0
l·m·n=0

∣∣	(i)
lmn

∣∣2
ωi−1zlmn

(
Q(1)∗

C + z∗
lmn

)
∑

l,m,n�0
l·m·n=0

∣∣	(i)
lmn

∣∣2(
Q(1)∗

C + z∗
lmn

) . (16)

Equation (15) shows that the wave vector of an NC phase can
be obtained from the IC and C wave vectors with a complex
number zi. However, the form of zi is complicated and gives
little intuition, and we still need to solve for 	

(i)
lmn to obtain the

numerical value of Q(i)
NC. So, we investigate its meaning with

the following approximation. In our previous work, we re-
ported the free-energy landscape where different free-energy
local minima correspond to distinct l, m, n values (Ref. [17]).
Numerical results show that the amplitudes 	

(i)
lmn are localized

near free energy local minima (Supplemental Material Fig. 3
[23]). Then, we have the approximation zi ≈ ωi−1zlmn, which

implies that the wave vectors of NC phases corresponding to
the free-energy local minima with the label lmn are given by
the following solution:

Q(1)
NC,lmn

Q(1)
C

= flmn
(
Q(1)

IC

) ≡ Q(1)
IC + zlmn

Q(1)
C + zlmn

. (17)

Equation (17) means that if QIC and QC are known, then
CDW phases between IC and C are described by distinct
Eisenstein integers zlmn (Supplemental Material Video 1
[23]). Figure 2 shows the free energy local minima. Fig-
ure 2(a) shows the CDW local minima for μ = 3 and ν =
1 (

√
13 × √

13 C structure) with N = 3 harmonics (see
also Supplemental Material Video 2 for larger N [23]).
We emphasize that the position of each local minima is
determined from Eq. (8) which contains only the term

L081407-4



CONFORMAL ASPECT OF CHARGE DENSITY WAVES: … PHYSICAL REVIEW B 109, L081407 (2024)

proportional to ei. In other words, we find that the ei term
alone can explain the structure of the free energy landscape
with a good approximation, without the need to solve for the
amplitudes 	

(i)
lmn.

Mathematically, Eq. (15), which includes Eq. (17) as an
approximation, is a conformal transformation. The set of
transformations f have a one-to-one correspondence with
a commutative subgroup of the projective linear group
PSL(2,Z[ω]). This group property implies that transition
between different local minima (different CDW phases) is
obtained by a composition of f and f −1. Three succes-
sive local minima lie on a circle whose center and radius
can be calculated as in Supplemental Material Note 3 [23]:
These can explain successive CDW phase transitions, such
as the IC → NC → C phase transition in 1T -TaS2 with de-
creasing temperature [14]. Figure 2(b) shows flmn(QIC) for
|zlmn| � 3. This type of transformation can explain how each
local minima is obtained from the IC phase. Figure 2(c)
shows flmn( fl ′m′n′ (QIC)) for |zlmn|, |zl ′m′n′ | � 1. This transfor-
mation can explain successive CDW phase transitions. The
free energy landscape in Fig. 2(d) 1T -TaS2 and Fig. 2(e)
2H-TaSe2 are obtained as in our previous work [14] (except
for 2H-TaSe2, we used T − TIC = −0.1 to show local minima
more clearly). We used experimental values of wave vectors

in Fig. 2(f). The free-energy calculation agrees with the local
minima of Eq. (17).

b. The T and stripe phases. This conformal method also ap-
plies to anisotropic stripe and T phases as follows. Anisotropic
CDW phases have domain walls that are tilted from each other
by an angle that is different from 120◦. This angle can be
obtained with good accuracy using real-spacing imaging such
as scanning tunneling microscope, so we use it as an input
parameter.

Suppose that the domain wall wave vectors q(i) of the T
phase are related by q(1) = w1q(1), q(2) = w2q(1), and q(3) =
w3q(1). For isotropic phases, we have w2 = ω and w3 = ω2.
Here, w1 = 1 is introduced for convenience such that the
harmonic wave vectors are given by

k(i) = (μwi − νwi+1)q(1) (18)

and Q(i)
lmn can be written as

Q(i)
lmn = Q(i)

Q(i)
C

(
Q(i)

C + ti,lmn
) − ti,lmn, (19)

where we defined

ti,lmn = (lwi + mwi+1 + nwi+2)μ − (lwi+1 + mwi+2 + nwi)ν

wi(μ − νω)
ωi−1. (20)

For isotropic phases, we obtain ti,lmn = zlmnω
i−1 as expected. Consequently, Eq. (11) can be written as

∂F

∂Q(i)∗ = s
3∑

j=1

∑
l,m,n�0
l·m·n=0

∣∣	( j)
lmn

∣∣2

[
Q( j)

Q( j)
C

(
Q( j)

C + t j,lmn
) − (

Q( j)
IC + t j,lmn

)]w∗
j

w∗
i

1

Q( j)∗
C

(
Q( j)∗

C + t∗
j,lmn

) = 0. (21)

We assume that components with different j values vanish
individually such that the wave vector of the T phase Q(i)

T is
given by

Q(i)
T

Q(i)
C

= Q(i)
IC + ti

Q(i)
C + ti

, (22)

where we defined the complex number

ti =
∑

l,m,n�0
l·m·n=0

∣∣	(i)
lmn

∣∣2
ti,lmn

(
Q(i)∗

C + t∗
i,lmn

)
∑

l,m,n�0
l·m·n=0

∣∣	(i)
lmn

∣∣2(
Q(i)∗

C + t∗
i,lmn

) . (23)

If we further assume that different 	
(i)
lmn are localized near

different local minima, then each local minima gives the T
phase with the following wave vectors:

Q(i)
T,lmn

Q(i)
C

= Q(i)
IC + ti,lmn

Q(i)
C + ti,lmn

. (24)

Next, the stripe CDW phase has domain-wall wave vectors
q(1) = 0 and q(2) = −q(3). In this case, we have 	

(1)
lmn = 0 so

Q(2)
lmn and Q(3)

lmn can be written as

Q(2)
lmn = Q(2)

Q(2)
C

(
Q(2)

C + s2,lmn
) − s2,lmn,

Q(3)
lmn = Q(3)

Q(3)
C

(
Q(3)

C + s3,lmn
) − s3,lmn,

where we defined

s2,lmn = (l − m)μ − (n − l )ν

μ − νω
, (25)

s3,lmn = (l − n)μ − (n − m)ν

μ − νω
, (26)

which can also be obtained from Eq. (20) with w1 → 0
and w3 = −w2. Consequently, Eq. (11) can be written as

L081407-5
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(i = 2, 3)

∂F

∂Q(i)∗ = −s
∑
j=1,2

∑
l,m,n�0
l·m·n=0

∣∣	( j)
lmn

∣∣2

×
[

Q( j)

Q( j)
C

(
Q( j)

C + s j,lmn
) − (

Q( j)
IC + s j,lmn

)]

× 1

Q( j)∗
C

(
Q( j)∗

C + s j,lmn
) = 0, (27)

where we have used ∂Q(2)

∂Q(3) = −1. We assume that components
with different j values vanish individually such that the wave
vector of the stripe phase Q(i)

S is given by

Q(i)
S

Q(i)
C

= Q(i)
IC + si

Q(i)
C + si

, (28)

where we defined the complex number

si =
∑

l,m,n�0
l·m·n=0

∣∣	(i)
lmn

∣∣2
si,lmn

(
Q(i)∗

C + s∗
i,lmn

)
∑

l,m,n�0
l·m·n=0

∣∣	(i)
lmn

∣∣2
(Q(i)∗

C + s∗
i,lmn)

. (29)

If we further assume that different 	
(i)
lmn are localized near

different local minima, then each local minima give the stripe
phase with the following wave vectors:

Q(i)
S,lmn

Q(i)
C

= Q(i)
IC + si,lm

Q(i)
C + si,lm

. (30)

It should be emphasized that the free energy local minima,
which correspond to the NC, T, and stripe phases, are all
obtained from Eq. (11). In the approximation where 	lmn are
localized near the local minima, a good approximation of the
DC wave vectors was obtained from Eq. (8) only. This result is
independent of the stability of each minima. Therefore, from
this analysis, we reveal the different roles of stability and
position in the CDW free-energy structure. From this point
of view, isotropic and anisotropic DC-CDW phases can be
clearly understood in a unified way.

Consistency with experiments. We have shown that the
wave vectors of DC-CDW phases can be described by con-
formal transformations. Which of the local minima become
stable depends on many factors such as temperature and
sample thickness, but our method gives a list of possible Q
vectors of new CDW phases. Since we have already shown the
consistency with known CDWs, we test our theoretical results
using experimental data. TaSe2 thin films with thickness of
10 nm order have been synthesized by the dechalcogenide
method. The details of this method are given in Refs. [8,27].
The CDW structure was observed by transmission electron
microscope (TED). The crystal structure is shown in Figs. 3(a)
and 3(b). Their TED patterns (obtained at room temperature)
are shown in Figs. 3(d) and 3(e). Figure 3(d) is identified as
the

√
7 × √

7 C phase as shown in Fig. 3(c) [8]. In addition to
the C phase, a NC phase with |Q(1)

NC|/|G1| = 0.341(2) and φ =
25.0(2)◦ was observed in two different samples (Fig. 3(e) [27]
and Supplemental Material Fig. 2) [23]. The fundamental NC
wave vectors Q(i)

NC are determined as in Supplemental Material
Fig. 2 [23], where we made sure that the strongest satellite

FIG. 3. (a) Structure of TaSe2 thin film. Red spheres represent
Ta atoms and yellow spheres represent Se atoms. (b) Top view of (a).
(c) The

√
7 × √

7 commensurate structure involving seven atoms, a
central Ta atom (green) surrounded by six Ta atoms (red), in the unit
cell. TED pattern of (d)

√
7 × √

7 C phase [8] and (e) NC phase [27]
in TaSe2 thin film. (f) The CDW free energy landscape for TaSe2 thin
film is calculated as a function of a general wave vector Q = (Qx, Qy )
with N = 3. See Supplemental Material Note 5 [23] for free-energy
parameters. The C phase is shown with a green dot. Experimental
value of the NC phase is shown with a red dot. An enlarged image
with local minima from Eq. (17) is shown in Supplemental Material
Fig. 4 [23]. (g) Radius of circles shared by N = 1 harmonics as a
function of commensurate angle φC.

peaks are included. Although it looks like the threefold rota-
tional symmetry is broken, this is due to the inclination of the
sample during the TEM measurement which affects the inten-
sity of the CDW satellite peaks. To explain the appearance of
this experimental NC phase, we first use Eq. (17) to see which
local minimum it corresponds to, then we calculate the CDW
free energy using Eq. (3).

The C and NC phases in TaSe2 thin films are obtained
at room temperature, so QIC with a much higher transition
temperature could not be measured. However, we can obtain
its approximate value based on the experimental NC phase. In
1T -TaS2 and 2H-TaSe2, QC and QIC differ by no more than a
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few percent [1,12,13]: We assume that this is also true for our
TaSe2 thin film.

Different MX 2 polytypes can have different nesting mech-
anisms. The IC phase in 2H-TaSe2 can be formed by saddle
point (van Hove singularity) nesting [19,20]. In thinner sys-
tems, the attractive force caused by the van Hove singularity
could be stronger than the force caused by Fermi surface
nesting. Saddle point nesting can occur both in the �-M di-
rection which is parallel to G1, or in the �-K (�-K ′) which is
tilted 30◦ (−30◦) from G1. From Ref. [19], one can estimate
|QIC| = 0.53 in the �-M direction, but this value is too large.
On the other hand, in the �-K or �-K ′ direction, one can
estimate |QIC| = 0.31 [19,20]. In fact, using Eq. (17), we
observe that the local minimum f031(QIC) corresponds to the
experimental NC phase if we set |QIC| = 0.35 ∼ 0.38 and
φ = −30◦ (Supplemental Material Video 3 [23]). The −30◦
angle implies that the IC phase in this sample is formed by
van Hove singularity rather than Fermi-surface nesting.

In the above, we found that the experimental QNC value
is included in the list of possible Qs if |QIC| = 0.35 ∼ 0.38
and φ = −30◦. We confirm this result by calculating the free
energy Eq. (3) numerically with the temperature dependence
of the form a0/2 = T − TIC where TIC is the IC-CDW tran-
sition temperature. The result of numerical calculation for
TaSe2 thin film is shown in Fig. 3. Note the multivalley
free-energy landscape which coincides with the local min-
ima obtained by the conformal method. If Eq. (17) was not
available, one would need performing numerical calculations
repeatedly by changing the values of QIC and other free-
energy parameters. Even if a result is obtained that fits well
with QNC, there is no guarantee whether this result is unique
or whether it was obtained by chance. On the other hand,
Eq. (17) allows us to determine the local minimum that fits
QNC using only the values of QIC and QC. Then, if neces-
sary, one can refine the free-energy parameters such that this
minimum becomes stable. Therefore, we conclude that our
method is ideal for analyzing CDW phases with almost no
assumptions.

Conclusion and discussion. In this paper, we investigated
the conformality of CDW in MX 2 compounds. We showed
that DC-CDW phases can be understood using conformal
transformations. This method forms a basis to describe suc-
cessive IC-DC-C phase transitions. If a CDW did not interact
with the underlying base lattice, then Q(i) may take arbitrary
continuous values, so the discreteness of this transformation
is due to the commensurability of CDW with the underlying
base lattice. We also applied our analysis to experimental
results of a NC phase in TaSe2 thin-film with a

√
7 × √

7 C
structure.

Why could we describe DC-CDW phases using a con-
formal transformation? Our reason is as follows. CDW has
the aspect of a quantum crystal with a macroscopic wave
function. The best way to describe a quantum crystal seems
to be a method that keeps local angles and produces constant
tension (crystal properties) and allows local deformations
(wave property). It has been found that the deformation of 2D
aperiodic lattices is governed by conformal transformations
that satisfy these requirements [28,29]. Regarding CDWs as
deformable superlattice crystals, it is reasonable that they can
also be described by conformal transformations. Recall that

a conformal transformation refers to a composition of trans-
lation, rotation, dilation, and inversion [16]. The first three
transformations can describe the change of CDW domain
structure, and the last transformation connects the real-space
structure to the momentum space. For nesting vectors that
happen to be close to the C condition, there is a conformal
law that locks in a CDW superlattice to the MX 2 lattice. On
the other hand, the ratio between the IC-CDW wave vector
and the MX 2 lattice constant is an irrational number, while
that of the C-CDW wave vector is an integer. Therefore, a
conformal description of CDW and the IC-DC-C CDW phase
transitions should be described by a conformal function that
connects continuous numbers (IC) and discrete numbers (C).
So, a conformal method with complex numbers, which natu-
rally satisfies these requirements, is ideal for studying CDW
phases. In what follows, we give some implications of our
results.

First, note that QC is a stationary point of the transforma-
tion (17), i.e., flmn(QC) = 1 (Supplemental Material Video
2 [23]). Therefore, we can regard QIC as a source, QC as a
drain, and QNC as crossing points of the transformation. From
this point of view, discommensuration may be understood
as deviation from fixed points. This picture is a natural one
because QIC values usually determine QC.

Second, in this paper, we described DC-CDW phases us-
ing the discrete conformal group PSL(2,Z[ω]), but a unified
description of FQHL phases was also made using the discrete
conformal group PSL(2,Z) [30–35]. These systems are both
incompressible with a gapped spectrum. Therefore, we sur-
mise that the field K in the group PSL(2,K) is discrete for
incompressible systems, and K is continuous for compressible
systems. These are summarized in Table I.

Third, local minima with the same value of |zlmn| lie on a
circle (Supplemental Material Note 2 [23]). Figures 2(d), 2(e)
and 3(f) show the case with |zlmn| = 1. Figure 3(g) shows the
radius R of these circles as a function of the C angle φC. Using
experimental values of Q we find that R increases with φC .
The difference between |QC| and |QIC| in 1T -TaS2 (

√
13 ×√

13 structure) and 2H-TaSe2 (
√

9 × √
9 structure) are both

2 − 3%, but the local minima are spread more widely (i.e.,
has larger R) in 1T -TaS2. On the other hand, NC is reported in
1T -TaS2 but not in 2H-TaSe2. Moreover, our TaSe2 thin film
has large R, which allows |QC| and |QIC| to differ by more
than 5%. Therefore, we surmise that, in addition to the norm
of Q, the phase of Q must be considered to obtain a stable NC
phase.

Fourth, we consider the temperature dependence of the
IC-DC-C phase transition. The amplitudes 	lmn change with
temperature, which can be confirmed by calculating Eq. (7)
numerically. So the wave vectors given by Eq. (15), Eq. (22),
and Eq. (28) also change with temperature. If the ampli-
tudes 	lmn change smoothly with temperature, then Q will
also change smoothly. The detail of transition depends on
the choice of ei(Q). But, in any case, we confirm that the
distribution of free-energy local minima barely changes (see
Supplemental Material Fig. 1 [23]).

Fifth, we have shown that the variety of CDW domain
structures can be understood using only the IC and C wave
vectors. Therefore, our method is both simple and power-
ful, making it an ideal tool for analyzing CDW domain
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TABLE I. Comparison of 2D electron systems and their representative groups. The incompressibility of a system is associated with the
presence of a band gap. We surmise that field K in group PSL(2,K) is discrete for incompressible systems, and K is continuous for compressible
systems.

2D system Compressibility/gap type Material Group

IC1 ↔ IC2 Compressible? [21] MX 2 PSL(2,C)

IC ↔ NC 1T-TaS2

NC1 ↔ NC2 Incompressible, [31] Comme. gap TaSe2 thin-film PSL(2,Z[ω])
IC ↔ C 2H-TaSe2VSe2

QHL Incompressible, magnetoroton gap GaAs PSL(2,Z)

walls. For example, we can show that the DC structure in
Cu-doped TiSe2 (with

√
4 × √

4 C structure) [36] can be
understood as the T phase and stripe phase. On the other
hand, the McMillan-Nakanishi-Shiba model can give only
free-energy results that are averaged over the system. There-
fore, some of the results reported in Ref. [36], such as the
disappearance of domain wall by removal of impurity, are
not covered by our results. On the other hand, our theory
can predict what kind of domain-wall structure (wave vectors)
can appear.

Finally, possible future studies are as follows. Our con-
formal method, which keeps angles and produces constant
tension (crystal properties) and allows local deformations

(wave property), is ideal for describing CDWs as quantum
crystals and would be applicable to quantum liquid crys-
tals and Moiré solids. We expect that our formalism is also
applicable to other superlattice systems [37,38]: 3He A/B
interface [39] and other triple-Q systems like skyrmion lat-
tices. Although we have focused on a triangular lattice, similar
results may be obtained in square lattice mutatis-mutandis
using Gauss integers Z[i] with elements z = a + ib, a, b ∈ Z
to describe CDWs in CuO, FeTe, and charge order.
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