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Bishop and Eldin (1950) 
Undrained triaxial tests on sand

1950s

➢ Initially saturated 
➢ Theoretical consideration of pore 

pressure change in dilating sample



Gradual accumulation of  
excess pore water pressure 

Sudden development 
of axial strain in both 
compression and 
extension sides

Lee and Seed (1967) 
Undrained cyclic triaxial tests on sand

1960s



Ishihara and Yasuda (1972) 
Undrained cyclic torsional shear tests on sand

1970s

➢ Electro-hydraulic loading
➢ Irregular excitations to 

simulate strong motion 
records



Towhata and Ishihara (1985) 
Undrained cyclic torsional shear/triaxial tests

1980s

Rotation of principal 
stress axes 



Koseki (1987, Master thesis)

𝑏 =
𝜎2 − 𝜎3
𝜎1 − 𝜎3

Conventional stress-
controlled loading device



Koseki (1987, Master thesis)

𝑏 =
𝜎2 − 𝜎3
𝜎1 − 𝜎3

= 0.5



1990s 

till now
A variety of laboratory stress-strain tests have been 
conducted to reveal liquefaction properties of sandy 
soils and applicability of countermeasures such as 
densification, chemical stabilization & desaturation.

For example, developing/improving apparatuses & relevant 
control/measurement techniques have been made on the 
following issues:
 Multi-directional loadings
 Effects of sample disturbance
 Effects of partial drainage (and/or membrane penetration)
 Effects of specimen preparation methods
 Effects of consolidation time
 Possible link with small strain modulus



1990s 

till now
A variety of laboratory stress-strain tests have been 
conducted to reveal liquefaction properties of sandy 
soils and applicability of countermeasures such as 
densification, chemical stabilization & desaturation.

For example, developing/improving apparatuses & relevant 
control/measurement techniques have been made on the 
following issues:
 Multi-directional loadings
 Effects of sample disturbance
 Effects of partial drainage (and/or membrane penetration)
 Effects of specimen preparation methods
 Effects of consolidation time
 Possible link with small strain modulus

In this lecture, it is attempted to report some of 
relevant recent challenges, including unsuccessful 
experiences, in such development/improvement.
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(AnhDan et 

al., 2006) 

Local deformation transducers
(LDTs)

LDTs (Goto et al., 1991) with a strip length of 90 mm for 100 

mm-high specimen and 500 mm for 600 mm-high specimen  

Affected by 
bedding error 
& end restraint

Strain gauges to 

measure bending 

deflection of  

phosphor bronze 

strip

Sensitivity 

of 0.001% 

Cylindrical
specimen

Prismatic
specimen



Clip gauges

LDTs

Accelerometers for 

dynamic measurement

Heterogeneous

specimen retrieved from 

tunnel excavation site 

(Koseki et al., 2011) 

Attempts to improve the 

LDT performance under 

low confining stress 

(Lenart et al., 2014) 

Application to clip gauges for 

large-size cylindrical specimen

(Koseki et al., 2011) 

Strain gauge



Movable         
Top Cap

LDT

Pedestal

LDTs in unconfined compression tests 

on gypsum-mixed sand

(Maqsood et al., 2019, this symposium) Movable Top Cap

For long-term tests, 

rubber membrane is used.



𝐴𝐴𝐷＝
LDT1 − LDT2

LDT1 + LDT2
× 100（%)

Absolute Average Difference of LDT 

strains (Maqsood et al., 2018) :
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V-LDTs

Strain

gauge

C-LDTs

(Cantilever

-type)

H-LDTs

C-LDT

Large scale plain strain 
compression tests on 
compacted gravel  
(Maqbool & Koseki, 2007)

Lateral 

confining 

plates

e1

e2 e3



Passive- and active-control "plane strain” compression tests on 
compacted gravel (Maqbool and Koseki, 2007)

Active Control

e2,local

=0

Passive Control

e2,local

≠0

Bedding error 

Fixed



External measurement 
of axial deformation  
(Koseki et al., 2001)

2.2 LDTs for hollow cylindrical specimen (torsional shear/triaxial)

accidentally conducted 
under misalignment of 
loading frame
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of axial deformation  
(Koseki et al., 2001)

Reduction
& recovery
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target
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Test results 
using P-LDTs 
after fixing  
misalignment
(HongNam, 
2004)

No sudden
reduction/
recovery

Reduction
& recovery
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2.3 Local dynamic measurements



Local dynamic measurement with 
large prismatic specimen (modified 
after AnhDan et al.,  2002)

Trigger (multi-layered 

piezo-electric actuator) Trigger

Receiver

Receivers

(accelerometers)

230 mm

d1

d3

d2

5
8

0

m
m

2
0

0

m
m

100 mm

Receivers

Trigger (on top cap) 

LDTs

Local dynamic measurement with 
medium cylindrical specimen (modified 
after Maqbool and Koseki, 2011)

Accelerometers and triggers for wave velocity

d

𝑣 =
𝑑𝑖
∆𝑡𝑖Affected by 

bedding error 
& end restraint



Like earthquake 
epicenter…

Application to AE (acoustic emission) tomography for 
source location

Sensitivity: 115 ± 3 dB 

(0 dB=1 V/m/s)

Working frequency:

10 kHz to 2 MHz

: unknown location 𝑥, 𝑦, 𝑧 and generation time 𝑡

: known location (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) and arrival time 𝑡𝑖

𝑑𝑖

Travel distance between AE source and i-th sensor: 
2

0
0

m
m

100 mm

(modified after 
Lin et al., 2019)

AE wave velocity (assumed to be 1500 m/sec for saturated sand specimen)

𝑑𝑖 = 𝑡𝑖 − 𝑡 × 𝑣 = (𝑥 − 𝑥𝑖)
2+(𝑦 − 𝑦𝑖)

2+(𝑧 − 𝑧𝑖)
2



Typical AE data for 0.5 second at a sampling rate of 2MS/sec

1 million data points

Automatic pick-up 

based on 

autoregressive 

information criteria 

(AIC) by Akaike (1974) 



Shear banding

(Lin et al., 2019)

Travel distance: 

𝑑𝑖 = 𝑡𝑖 − 𝑡 × 𝑣𝑖 Triaxial compression test 
on saturated dense sand 
(v=1500 m/sec)

With dry sand, effects
of Inherent & stress-
state dependent 
anisotropies shall be 
considered. Movable pedestal



Summary on local measurements (1/2)
 Several types of LDTs have been developed 

for local static measurements in triaxial, 
plane strain and torsional shear tests. 

✓ They are effective in reducing the effects of 
bedding error, end restraint and/or system 
compliance in general. 

Aluminum

target

Gap sensor

P-LDT

Insufficient stiffness

of internal loadcell

Specimen

7

Misalignment

5

6

Bedding error 

Loading system

Loading ram

Misalignment

and end restraint

4
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1

Misalignment

GS3

P-LDT

GS4

GS1GS2

GS6GS8

GS5GS7

✓ They can be also used to evaluate 
possible non-uniformities of the 
local stress/strain distribution 
induced by system compliance 
and/or specimen heterogeneity.



Summary on local measurements (2/2)
 For local dynamic measurements, 

accelerometers and AE sensors have been 
used for evaluation of elastic wave velocities 
and AE source location, respectively. 

✓ For non-destructive evaluation of particle 
crushing and/or sliding, the AE measurement 
would be promising, while further studies 
are required on effects of anisotropies.

𝑑𝑖 = 𝑡𝑖 − 𝑡 × 𝑣𝑖
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Liquefaction tests using motor-driven loading devices

Conventional 
loading device 
(pneumatic 
cylinder)

Motor-driven
loading device
(Zhao, 2018)



Gradual accumulation of  
excess pore water pressure 
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Lee and Seed (1967) 

Sudden development of axial 
strain in both compression 
and extension sides

Silica sand No.7



3.7x10
3

3.8x10
3

3.9x10
3

4.0x10
3

4.1x10
3

4.2x10
3

0.0

0.2

0.4

0.6

0.8

1.0

 

E
xc

es
s 

po
re

 w
at

er
 p

re
ss

ur
e 

ra
ti

o,
 R

u

Elapsed time (second)

(e)

3.7x10
3

3.8x10
3

3.9x10
3

4.0x10
3

4.1x10
3

4.2x10
3

-40

-20

0

20

40

 

D
ev

ia
to

r 
st

re
ss

, q
 (

kP
a)

Elapsed time (second)

(a)

3.7x10
3

3.8x10
3

3.9x10
3

4.0x10
3

4.1x10
3

4.2x10
3

-12

-8

-4

0

4

 

A
xi

al
 s

tr
ai

n,
 e

a (
%

)

Elapsed time (second)

(b)

Conventional 
loading device 
(pneumatic 
cylinder)

Motor-driven
loading device
(Zhao, 2014)

0.0 2.0x10
4

4.0x10
4

6.0x10
4

8.0x10
4

-80

-40

0

40

80

 

 

D
ev

ia
to

r 
st

re
ss

, q
 (

kP
a)

Elapsed time (second)

(a)

0.0 2.0x10
4

4.0x10
4

6.0x10
4

8.0x10
4

-12

-8

-4

0

4

8

12

 

A
xi

al
 s

tr
ai

n,
 e

a (
%

)

Elapsed time (second)

(b)

0.0 2.0x10
4

4.0x10
4

6.0x10
4

8.0x10
4

0.0

0.2

0.4

0.6

0.8

1.0

 

E
xc

es
s 

po
re

 w
at

er
 p

re
ss

ur
e 

ra
ti

o,
 R

u

Elapsed time (second)

(e)

Silica sand No.5 Silica sand No.7

3.7x10
3

3.8x10
3

3.9x10
3

4.0x10
3

4.1x10
3

4.2x10
3

-20

-10

0

10

20

 

S
tr

ai
n 

ra
te

, e
a (

%
/m

in
)

Elapsed time (second)

(f)

•

0.0 2.0x10
4

4.0x10
4

6.0x10
4

8.0x10
4

-0.4

-0.2

0.0

0.2

0.4

 

S
tr

ai
n 

ra
te

, e
a (

%
/m

in
)

Elapsed time (second)

(f)

•

Control of loading device 
required based on feedback 
from the load cell

0.1 %/min

Longer testing time 
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Conventional 
loading device 
(pneumatic 
cylinder)

Motor-driven
loading device
(Zhao, 2014)
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Response at extremely low effective stress states could be 
more accurately measured with motor-driven device.

Correction for
drift of load cell and 
possible interlocking
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(q-dq)/(p’+dp’) ~ ea



Cyclic undrained
torsional shear tests
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Failure of dip slope by 2004 Niigataken-Chuetsu Earthquake

Yokowatashi, Ojiya city, Niigata Prefecture, Japan 

3.2 Cylindrical/prismatic specimens with thin sandy layer



Thin tuff sandy layer: 

t=1~3 cm 

Block 

Sample

Siltrock layer

(Shiraiwa Formation,

3 million years)

Field survey at Yokowatashi Large cavities

(Deng et al. 2011a)



(Deng et al. 2011b)
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to 
specimen 
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∆V 

∆V 

y=y(x) : 
shown in 
Fig. 4e 

AS: Air servo;

LCDPT: Low capacity differential pressure transducer;

HCDPT: High capacity differential pressure transducer;

Vi : Volume of injected water;

CPc: Current effective confining pressure;

Vn : Volume of needed water to inject;

∆V: Volume increment of injected water at the next step;

E.C.P.: Effective confining pressure;

V.W.F.: Apparent volume change due to system compliance.
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3.3 Segregated hollow cylindrical specimen
Liquefaction by 2011 off the Pacific coast of Tohoku Earthquake

Extensive sand boiling

Lateral flow

Uplift of 

sewage 

manhole

Lateral flow



Land development works in Kuki city, Saitama prefecture, using 

dredged sandy soils (Koseki et al., 2015)

Temporary cut-off dike 

for reclamation works

Extensive sand boiling



Segregated 
specimen 
preparation 
(Fauji and 
Koseki, 2014)
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m
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3rd sand layer

2nd sand layer

1st sand layer

1st fines layer

2nd fines layer

Pluviation
through 
water

Removal 
of 3rd fines
layer



Observation of water film below fines layer in 1-D column test 

(modified after Fauji, 2015)

15 sec

600 sec135 sec

Segregated 
specimen in 
acrylic pipe

Impact 
loading 

(t=0 sec)

30 sec
Water film 

(Kokusho, 

1999)
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Partial 

water 

film

0 sec
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layer
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6cm (inner diameter)



Undrained cyclic torsional shear test on segregated hollow 
cylindrical specimen (modified after Fauji and Koseki, 2014)
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As compared to uniformly-mixed and moist-tamped specimen, 

no significant effect of possible water film formation was observed.

Gap formed during 

consolidation.

Membrane wrinkles 

appeared across the gap 

during cyclic loading.



Another membrane 
glued in advance

Attempts to observe water film in cyclic torsional shear test on 

segregated hollow cylindrical specimen (modified after Fauji, 2015)
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a) Reinforcement 
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Confirmation of light 
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water specimen

c) LED lights 
installation
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Potentiometer
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Stone

Vertical Control

System

Rotational

Control System
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Load

Cell

Cell Pressure

Back Pressure

Pneumatic

Actuator

Pneumatic
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Servo motor

Electronic

Balance

Servo motor

Specimen

Do = 20 cm

Di = 12 cm

H = 30 cm

LED lights

Still, no significant effect of possible water film formation was observed.



Observed through 
transparent 
membrane and 
analyzed as direct
evaluation

Pasted in advance 
on membrane and 
analyzed as 
indirect evaluation

Cylindrical specimen using transparent membrane and 

colored sand particles (modified after Zhao et al., 2018)

3.4 Direct/indirect evaluation of local deformation



Indirect and direct evaluation resultsOriginal photo
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Pluviated through air (Dr=70 %)

(modified after Zhao et al., 2018)

Pluviated through air (Dr=53 %)

Moist-tamped (Dr=53 %)

Vertical slippage accumulation during liquefaction of silica sand



Summary on unconventional liquefaction tests (1/2)

 Liquefaction tests using motor-driven loading devices can reveal more 
clearly the specimen response at extremely low effective stress states, 
though they require longer testing time and special feedback control. 
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✓ They are also effective in conducting 
image analysis of the specimen 
deformation during liquefaction, by 
which local deformation can be directly
evaluated using colored sand particles 
and transparent membrane.
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driven
loading 
device



Summary on unconventional liquefaction tests (2/2)

 Liquefaction test results on segregated 
specimen and interlayered specimen 
shall be analyzed and interpreted as 
boundary value problems.
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Direction of 
pedestal movement  

✓ Effects of system compliance need 
to be considered properly, including 
drift of load cell output and local 
drainage due to membrane 
penetration/wrinkling 
as well as filter paper 
deformation.
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Outline1. Introduction

2. Local measurements

2.1 LDTs for cylindrical/prismatic specimens (triaxial)

2.2 LDTs for hollow cylindrical specimen (torsional shear/triaxial)

2.3 Local dynamic measurements

3. Unconventional liquefaction tests

3.1 Liquefaction tests using motor-driven loading devices

3.2 Cylindrical/prismatic specimens with thin sandy layer

3.3 Segregated hollow cylindrical specimen

3.4 Direct/indirect evaluation of local deformation during liquefaction

4. Other special tests

4.1 Large deformation tests

4.2 Direct tension tests

4.3 Long-term tests

5. Concluding remarks



Large deformation of liquefied soils

Lateral flow

Uplift of 

sewage 

manhole

Watanabe
et al. (2016)

Towhata et al. (1992)Before

After



Large deformation torsional shear liquefaction tests

Pre-pressurized nut
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Ball screw
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transmit torque

Ball spline shaft
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and Chiaro et al., 2012, 2013)
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Pneumatic system for 

vertical loading

Direct motor system for 

torsional loading

Inner ring

Outer ring

Hollow cylindrical specimen

Stacked-ring torsional shear apparatus 
to maintain the same specimen shape & 
dimensions even after large deformation

155 
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90,

150 
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Modified after 
Wahyudi et al. 
(2015) 



1-D compression 

on Toyoura sand 

(Dr=55 %)
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Constant-volume monotonic shear on Aso pumice 
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4.2 Tension tests
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24

最小主応力[kPa]

Minor principal 
stress (kPa) :
Tension in red

Earthquake-induced 
tensile failure due to 
excessive bending

Rammed earth wall (Araki et al., 2016)

 

Lattice-shaped ground improvement

by in-situ cement mixing as liquefaction

countermeasure (Namikawa et al., 2007)



Comparison of tensile strengths of cement-treated sand obtained by
splitting (Brazilian) & unconfined direct tension tests (Koseki et al., 2005) 
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Unconfined tension tests
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Trimmed cylindrical specimen for unconfined tension test 
(Namikawa and Koseki, 2007) 
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Typical condition of failed specimens in unconfined tension 
and splitting tests on unsaturated rammed earth material
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Local 
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content

Potentially weak interfaces

(Araki et al., 2016) 



Unconfined torsional shear on 
hollow cylindrical specimen of 
cement-treated sand 

Outer diameter: 7 cm
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(Koseki et 
al., 2005) 

160 180 200 220 240 260 280 300 320 340 360
0

50

100

150

200

250

300

350

400

With frictional ends

 and without blades: 

 t=2 cm

 t=1.5 cm

 t=1 cm

 Unconfined tension tests

 Splitting tests

Curing time (hours)

Water * 1.5

T
e

n
s
ile

 s
tr

e
n

g
th

, 


t (
k
P

a
)

With less friction ends:

 t=2 cm without blades

 t=1.5 cm without blades

 t=2 cm with blades

 

 

Unconfined tension tests

Tension Compression

Unconfined 

tension 

tests

Unconfined 

compression tests



Unconfined monotonic compression tests under different strain 

rates on gypsum-mixed sand (Maqsood et al., 2019, this symposium)

Long-term creep loading tests using triaxial apparatus:
Hayano et al. (2001) on sedimentary soft rocks

AnhDan et al. (2006) on compacted gravels

Enomoto et al. (2015) on sands, and 

Enomoto et al. (2016) on undisturbed natural gravelly soils

4.3 Long-term tests Stable performance of 

loading device, its 

control system and data 

acquisition system shall 

be ensured

2.1×10-5 %/min.

5.3×100 %/min.



Long-term stability of load cell, LDTs & external displacement 

transducer (converted into virtual specimen response)

Load cell

7 days

External disp. transducer

LDTs (av.)

7 days
Air temperature

Latex rubber membranes start to allow 

penetration of cell water in about 100 hours 

(Tatsuoka et al., 1988)

✓ Inability to evaluate volume change of specimen

✓ Desaturation of initially saturated specimen



Long-term air-permeability of micro-porous membrane filter 

Application of air 

pressure started (t=0)
No air bubble visible  

(t=48 hours)

Air bubble appeared 

(t=54 hours)

Air bubble expanded  

(t=72 hours)

filled fully

with water

air Pressure

steel mesh

membrane

filter

steel plate

flat screw

o-ring

acrylic container

upside acrylic bottle

sealed by grease

taking photos

Advantage over ceramic disks in terms of equilibration time 

for measurement and control of pore water pressure in 

unsaturated soils (Nishimura et al., 2012; Wang et al., 2016) 

Cross-section
(Wang et al., 2017)

Membrane 

filter

Membrane filter with nominal AEV of 250 kPa

under sustained air pressure of 25 kPa



Summary of lessons learned from other special tests (1/2)
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 Though rigid boundary is effective 
in keeping the specimen shape in 
large deformation tests, effects of 
interface friction shall be 
evaluated & considered properly.

155 mm

53 mm

 In evaluating tensile behavior of 
bounded soil specimens, direct 
tension tests have advantages 
over splitting tests, while 
attentions are required on 
testing apparatus & procedures.

GypsumEpoxy

resin



Summary of lessons learned from other special tests (2/2)

 In conducting long-term tests, stable performance of loading device, 
its control system and the data acquisition system shall be ensured. 

✓ In long-term use of rubber and microporous membranes, possible 
penetration of water and air, respectively, shall be checked as well.  

Air bubble 

expanded  

(t=72 hours)



Outline1. Introduction

2. Local measurements

2.1 LDTs for cylindrical/prismatic specimens (triaxial)

2.2 LDTs for hollow cylindrical specimen (torsional shear/triaxial)

2.3 Local dynamic measurements

3. Unconventional liquefaction tests

3.1 Liquefaction tests using motor-driven loading devices

3.2 Cylindrical/prismatic specimens with thin sandy layer

3.3 Segregated hollow cylindrical specimen

3.4 Direct/indirect evaluation of local deformation during liquefaction

4. Other special tests

4.1 Large deformation tests

4.2 Direct tension tests

4.3 Long-term tests

5. Concluding remarks



Concluding remarks

 Some of the “element” test results need to be 

analyzed and interpreted as boundary value problems 

in terms of the stress/strain non-uniformities and the 

specimen heterogeneity.

✓ Possible effects of system compliance should be 

properly considered as well.

 Each of the variety of laboratory stress-strain test 

methods has its specific advantages and limitations.

✓ By developing an original way of application, the 

limitation may turn into an advantage.


