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Legacy 

TC-101 honouring 
Prof A W Bishop
1920-1988

Analyst, 
Experimentalist,
Equipment designer

Life, work and archived papers:
ww.cv.ic.ac.uk/SkemArchive/index.htm

Bishop’s 1950s laboratory at IC



Sampling & 
Advanced 
Laboratory 
testing:

Equipment & 
techniques

Rigour, meticulous attention to detail, 
engineering application

Bishop’s last keynote: Stockholm ICSMFE 1981:
With 70 former and current IC group members

Alan 
Bishop



Lecture themes

Following Bishop & TC101: special capabilities & 
practical value of Advanced Laboratory Testing

Contributions: Author, colleagues & French co-workers

Integration of laboratory & field research with analysis

Example of application considered fully resistant to 
‘theoretical refinement’: Piles driven in sand

For clays: see Jardine et al 2012



Sungai Perak, Malaysia: 160m central span

Mainstream Civil Engineering:    see Williams et al 1997
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Offshore Energy applications
Oil and gas platforms

Piled tripods for Wind-turbines:
Borkum West II German N. Sea
Merritt et al 2012

Overy 2007



Research agenda: set by field experience

Axial capacity - improved after field research in France: 
Lehane et al 1993, Chow 1997, ICP-05 (Jardine et al 2005)

Installation stresses? Tip buckling

Other observations revealed by 
large-scale Dunkerque tests

Creep & ageing: affects axial 
capacity & stiffness

Non-linear stiffness: axial, 
lateral & rotational

Cyclic loading: potential impact
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Dunkerque 
programme:

Dense marine sand

Eight steel pipe piles 
457mm OD, 19m

Static & cyclic loading 

9 days to 1 year after 
driving

Jardine et al 2006
Jardine & Standing 2012 



1st tension tests varying with age

Ageing, creep & non-linear axial shaft stiffness, 
235 days

81 days

9 days

Creep important 
at Q > 1MN

QRef = 200 kN



Non-linear axial stiffness: first time tension tests

Head loads Q, displacements δ

Pile stiffness k = Q/δ

QRef = 200 kN

kRef = stiffness at QRef
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End points refect
age after driving

Creep increments

No ‘linear-elastic’ plateau
Stiffness falls with Q/Qref

Creep & ageing: very significant



Impact of axial cyclic loading

Load controlled 
T = 60s

One-Way: tension 
Two-Way: tension 
& compression

Plus: tension tests 
to failure

Failure depends on N, Qcyclic, Qmean & static tension capacity QT

Loads normalised Qcyclic/QT & Qmean/QT to allow for age & pre-testing



Impact of axial cyclic loading: can halve capacity
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Research to improve understanding & predictive scope

1. Non-linear stiffness from advanced laboratory tests

2. Lab-based FE predictions & field trends

3. Stress path studies of creep & ageing

4. Installation soil stresses: laboratory model

5. Interface-shear & grain-crushing experiments

6. Lab results & ‘breakage’ FE analysis

7. Cyclic loading: towards lab-based design



Stress-path experiments

Pluviated Dunkerque, Ham River (Thames 
Valley) & Fontainebleau NE 34 sands

Sub-angular, 0.2< d50 <0.3mm, silica media

Theme 1



Stress path test: Kuwano 1999 

‘Bishop & Wesley’ cell: 
200 x 100mm specimens

Automated stress & strain options

High resolution local strain gauges 
multi-axial Bender Elements (BE)

Elasticity & kinematic yielding 

Non-linearity & anisotropy

Time dependency 



Elasticity & Kinematic Yield Surfaces: KYS
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Elastic property measurement 
techniques

Bender Element shear wave velocities:
Vertical, polarised horizontally – Svh

Horizontal, polarised vertically - Shv

Horizontal, polarised horizontally - Shh

And vertical P-Waves

Vertical & radial static probing tests
Range of conditions, keeping within Y1

Full cross-anisotropic elastic parameters set,
assuming rate independence
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HRS & Dunkerque sands: 
h =170, di = 38 & do= 70 mm

Correlated with BRE’s field 
seismic CPT & DMT Gvh tests at 
Dunkerque

Nishimura 2006

Resonant column & static 
Torsional Shear (TS) HCA tests

Porovic 1995 & Connolly 1998

Dynamic & static Gvh

Wide range of conditions



Cross anisotropic behaviour within Y1 KYS
Kuwano 1999, Jardine & Kuwano 2003 

Stiffnesses vary with σ′ components & void ratio (e)

Eu = f (e). Au . (p′ /p′r) Bu

E′v = f (e). Av . (σ′v /p′r) Cv

E′h = f (e). Ah . (σ′h /p′r) Dh

G′vh = f (e). Avh . (σ′v /p′r) Cvh . (σ′h /p′r) Dvh

G′hh = f (e). Ahh . (σ′v /p′r) Chh . (σ′h /p′r) Dhh

f (e) = (2.17 – e)2/(1 + e) 

pr is atmospheric pressure

Aij, Bij, Cij & Dij non-dimensional material constants

Stress level exponents Bu and [Cij + Dij] ≈ 0.5 to 0.6
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Anisotropic Y1 stiffness profiles: Dunkerque
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Anisotropy post Y1 in non-linear range:
Secant shear stiffnesses: dense Dunkerque sand
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Lab-based ICFEP predictions for  
Dunkerque tests

Theme 2



Predictive tools: ICFEP; Potts and Zdravkovic 1999 

Elastic pile displaced axially to failure

Sand: non-linear & σ′ dependent tangent stiffness between Y1 & Y3
yield surfaces

G  =  f(p΄,  εs) fitted to OCR = 1, Gvh trends

K΄ = g(p΄,  εvol)

Y3 : non-associated Mohr-Coulomb, depth-variable φ′ & Ψ

Interface: effective-stress Coulomb, δ from interface shear tests

Can be extended: anisotropy, stress reversals or ‘bubble’ models…



Non-linear predictions for 81 day tension test 
19m, 457mm OD, steel pipe pile
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components…

Pile ageing: adjustment 
from field trends…

Creep & time – not 
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Jardine et al 2005b
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Good for capacity & working 
load stiffness

Under-predicts
time-dependent
final movements



Creep and time effects

Need: stable high resolution 
instruments, careful calibrations, 

accurate stress path & temperature 
control

Theme 3



Isolating elastic, plastic & medium-term creep strains 
K0 test on med. dense HRS
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Elasticity from stiffness functions

dεelastic/dεconsolidation falls with p′, 
increases on unloading

Creep from dp′/dt=0 pauses Kuwano 1999, Jardine & Kuwano 2002



‘Consolidation’ and medium term creep

εcreep/εconsolidation grows 
large with p’ & time 

Falls with K = σ′h/σ′v

Falls with ID

Falls on unloading

Ratios of 
εcreep/εconsolidation

Kuwano & Jardine 2002



Stress path & creep stages Early creep-time curves

Creep: HRS under undrained triaxial shearing

Fig 14
• Two 

• Three
» Four

 Five

Creep negligible until Y2 engaged
Increases steadily post Y2 
Stabilises after phase transformation - Y4

p′  (kPa)

Y4



200 x 100mm, dense TVS

New ‘Bishop and Wesley’ cell

Higher resolution strain gauges

Accurate cyclic loading

Longer term creep tests

Interactions with cycling

Rimoy’s tests: updated equipment

Rimoy & Jardine 2011 



Medium dense TVS tests: K0 paths, OCR = 1
‘True’ creep and ‘Creep plus low-level cycling’

Extended ‘creep’ 
p′ = 200, 400, 600 kPa

Extended cycling: 
qcyclic/p′ = 0.015 to 0.05
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Creep straining patterns

Invariant shear strains:
εs increases monotonically, 
dεs/dt increases with p′

Volume strains: 
K0 pattern initially: 
dεvol/dεs= 3/2

Then reverses, negative dεvol/dt
less dilatant at higher p′  

Y2 KYS: 
Moving/changing with time
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Adding low level cyclic perturbations  

Applying qcyclic/p′ = 0.015 to 0.05                   Augments straining

Creep & yielding: affected by stress state, time & background cycling
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Distributions of σ΄r σ΄z & σ´θ around piles? 

Important to modelling ageing, cyclic 
response, group effects..

IC-Grenoble laboratory model & particle scale 
studies

Theme 4
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Model experiments with Prof. Pierre Foray

1.3 x 1.5m chamber with close temperature & pressure control
Dense pluviated Fontainebleau NE34 sand; CPT: 20< qc <25 MPa
Tests over months under 150 kPa
Up to 36 stress sensors in sand
Multiple tests with instrumented Mini-ICP

Jardine et al 2009, Zhu et al 2009



Mini-ICP model pile

Stainless steel: 1.4m x 
36mm

Cyclic jacking installation

Traces shaft effective
stress paths and tip loads

Local measurements of:

– Axial load

– Surface τrz & σr

At three h/R levels

h,
 h
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Jardine et al 2009



Installation σ´r trends
in sand mass:

End of push End of pause
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Jardine et al 2013b



Radial profiles of σ´r /qc and σ´θ /qc shortly after installation

σ´r and σ´θ profiles interlinked, peaks in at 2 < r/R  < 4

Critical to shaft capacity ageing theories

Compared later to advanced analysis

Radial stresses measured on pile face – far below installation maxima



Interface shear zone;  Yang et al 2010 

Pile edge

Grey dense fractured shear zone ‘crust’
0.5-1.5mm thick, growing with h 
Not present if qc < 6 MPa

10 mm

36 mm

Side view of vertical
sample from shaft

Shaft view from
above during excavation



1

2

3

Breakage Zones 1, 2 & 3

Breakage starts under tip  
σ′v > 20 MPa

Fractured sand displaced & 
spread over shaft: Zone 1

Further abrasion on shaft

Partial fracturing in outer 
Zones 2 & 3

Yang et al 2010



Micro analysis of progressive grain crushing

(a) Fresh (b) Zone 1

(c) Zone 2 (d) Zone 3



Qic-Pic laser analyses of small samples: 
Progression from fresh sand to Zone 1 ‘crust’

Breakage most severe in Zone 1, less in Zones 2 & 3



Matching pile conditions in lab tests

Oedometer, interface ring-shear & high-to-low 
pressure stress path experiments

Theme 5



High pressure oedometer compared to Zone 1
Void ratios, limits & sand states

Fresh NE34
e = 0.63

Average Zone 1
e = 0.36

High pressure
oedometer

Yang et al (2010)



Wide range of silica sands: coarse example

Abrading steel
interface

Crushed sand

Intact sand

Replicating shear zones: ‘Bishop’ ring-shear interface tests

Sands sheared against steel for metres 
σ′n up to 800 kPa; Ho et al 2011



Interface shear angles vary with shear displacement

Large displacement δ angles: independent of ID and 
vary less with d50 & interface configuration

‘5mm’ shear box



50mm D, 100mm L 
Dense NE 34 specimens

Cuccovillo and Coop 
1998 test system

High-to-Low Pressure Triaxial tests

High-to-Low pressures,
without dismantling & 
changing soil fabric

Matching model pile 
installation stress paths



High-to-Low pressure stress-path tests
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Effects on angle of shearing resistance?

High pressure 1st shearing:
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Simulating crushing and pile installation stresses

‘ALE’ Finite Element method; Zhang et al 2013a, b 

Monotonic penetration with ‘Breakage’ mechanics model 
from standard lab tests 



End bearing and breakage: Zhang et al 2013’s predictions

Predicted and measured
pile tip stresses qc

Contours of breakage parameter B:
Fresh sand B = 0, fully fractured B = 1
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(a) Numerical results by Zhang et al. (2013)

Fontainebleau sand 

σ´r /qc and σ´θ /qc profiles predicted during installation

Encouraging agreement with cyclic penetration model pile tests

But predictions steady at h/R > 10, while shaft σ´r/qc
measurements keep falling with h/R 

Improve by modelling shaft abrasion & cyclic penetration?

Maxima within 30%
of measurements



Cyclic axial loading

Model pile lab tests extending Dunkerque 
field experiments

Parallel cyclic lab element testing

Integration into practical design

Theme 7



Stable Mini-ICP cycling: interface stress paths 
Load-controlled to N > 1000
Stresses remain within Y2 shaft capacity rises

Tsuha et al (2012)



Unstable stress paths 
Mini ICP tests failing with N < 100

Displacement-controlled
Two-Way tests engage Y3 and Y 4
Phase transformation at interface

Load-controlled
One-Way tests engage Y2 

Drift towards interface failure

Shaft capacity falls markedly

Tsuha et al (2012)



Cyclic failure interactions: model & field cases
Mini-ICP & NE34 Dunkerque full scale

es

Comparable trends; field response marginally more robust
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Matching cyclic conditions in lab element tests 

γrz shearing dominates
εθ = 0, εz is small 
εr constrained by soil mass

Interface δσ′r/δr = 2G/R 
Constant Normal Stiffness?
G ≠ constant, R = variable
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τrz

Apply undrained CNS = ∞
Cyclic Triaxial CTX or 
Simple Shear CSS tests

CSS tests in HCA?

Pre-cycling stress path?



Undrained cyclic element tests: NE34 & Dunkerque sands

1500 cycle CTX tests from OCR = 4

Y2 yielding and p′ drift 
rates depend on:

qcyclic/p′ and N

CTX or HCA CSS mode

OCR & pre-cycling

Creep & ageing pauses

Sim et al 2013



Practical Application:

Jardine et al 2012
Andersen et al 2013
SOLCYP – Puech et al 2013

Borkum West II; Merritt et al 2012

www.heavyliftspecialist.com

Wednesday TC-209 workshop



Bishop Lecture: Summary and Conclusions 

• Challenges posed by field experience & observations

• Advanced Lab testing: permits scrutiny of Elastic, 
Plastic, Anisotropic, Kinematic Yielding, Time-dependent 
and Cyclic soil behaviour in precise experiments

• Also critical to investigating pile installation stresses, 
grain-crushing, interface-shear & cyclic behaviour

• Endorse Bishop’s approach: integrate laboratory 
experiments with field & analytical research - and help 
apply the results in practice
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