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Topics:

To illustrate significant roles of laboratory stress-strain 

tests of geomaterial for developments in geotechnical 

engineering research and practice, 

several recent advances in our understanding of: 

1) quasi-elastic stress-strain behaviour; 

2) rate-dependent stress-strain behaviour; and 

3) strength and stiffness of compacted soil related to 

field fill compaction control and design

are presented. 
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1) quasi-elastic stress-strain behaviour; 
2) rate-dependent stress-strain behaviour; and 
3) strength and stiffness of compacted soil related to 
field fill compaction control and design;

among other many important topics. 
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(Tatsuoka & Shibuya, 1991) 
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Can we observe “rate-independent and reversible 
(i.e., elastic) behaviour” at very small strains?



Triaxial test:

Specimen (30 cm-dia. 
& 60 cm-high)

Proximity
transducer

Local deformation 
transducer (L.D.T.)

Local axial 
strain 

Axial strain 
including B.E.

Bedding error
Pressure cell

Specimen



Well-compacted air-dried Chiba gravel (crushed well-graded 
angular sandstone from a quarry); Dmax= 38 mm, D50= 3.5 mm 
& Uc= 12.75 
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9.52-4.75 mm 4.75-2.0 mm < 2.0 mm
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Nearly no rate effects for 
largely different  loading 
frequencies (by a factor up 
to 5,000 times) 

- Cyclic triaxial tests; 
a very small axial 
strain amplitude 
(about 0.001 %)
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- Relationships between Ev at strain of 
0.001 % or less and axial strain rate 
of hardrock cores; mortar & 
concrete; sedimentary softrock; 
cement-mixed gravel; gravel; sand; 
& clay by static tests (mostly) & 
dynamic tests (partly)

→→→→Generally very small rate-
dependency, but some details HH.
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A very low rate-dependency 
in cyclic triaxial tests on 
moist Chiba gravel
→ nearly elastic behaviour



A large number of data 
sets show that “the shear 
modulus at very small 
strain, G0, of high-quality 
undisturbed samples by 
triaxial tests” is essentially 
the same with “Gf from 
field Vs” evaluated under 
otherwise the same 
conditions.

(Tatsuoka et al., 1999a&b)
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“More linear stress-strain relations” at higher strain rates

(Santucci de Magistris et al., 1999)
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Essentially rate-independent & reversible (i.e., elastic) stress-
strain behaviour at strains about 0.0001 % ! 
More rate-dependent behaviour at larger strains !

(Santucci de Magistris et al., 1999)
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     q     Elastic limiting line 
        
                                      Increasing  
                                      the strain rate 
                             Creep 
                         
                                      
                  
                          ; Limit of liner elastic behaviour                
                           at each strain rate 
       0                             ε 

0.001 %                   

General trends of behaviour:
1. The stress-strain relation approaches the elastic limiting line as 
the strain rate increases. 
2. The elastic zone becomes larger as the strain rate increases.
3. The elastic zone disappears at very low strain rates.

These trends can be described by the non-linear three-component 
model.



The test results are interpreted and simulated by:
the non-linear three-component model (Di Benedetto 

& Tatsuoka, 1997; Di Benedetto et al., 2002; Tatsuoka 
et al., 2002, 2008)
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Sustained loading 
at q= 300 kPa for 24 hours

(Kiyota & Tatsuoka, 2006, S&F; Tatsuoka et al., 2008a, S&F)

0. 3 mm

Drained TC test (σ’h= 400 kPa) on 
loose silica No. 8 sand

A large quasi-elastic zone develops upon the restart of ML at a 
constant strain rate after creep deformation.
■The size becomes larger with an increase in the creep strain 
and the strain rate during ML.



(Tatsuoka et al. 2008b, S&F)

Multiple large quasi-elastic zones develop by ageing effects (i.e., 
bonding) in addition to creep deformation;
drained TC tests on compacted moist cement-mixed well-graded 
gravelly soil (model Chiba gravel)
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(Tatsuoka et al. 2008b, S&F)

Kinematic development of quasi-elastic zone by ageing effects 
in addition to creep deformation at multiple stress states

Yield point for
large-scale 
yielding 



Kinematic development of yield locus by ageing and creep:
- initial curing for 9 days at stress point O; and 
- initial curing for 7 days at O + re-curing for 2 days at stress 
points B, C, D & E         (cement-mixed model Chiba gravel)

(Ezaoui et al. 2010, S&F)
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1) The elastic deformation characteristics can be evaluated 
by not only dynamic tests but also static tests.

Rate-independent behaviour: summary-1

‘Static’ & ‘dynamic’: terminologies for systems, 
not for material properties

Static Young’s modulus & dynamic Young’s modulus:
should not be used.

Static and dynamic measurements of Young’s modulus: OK !



2) Statically and dynamically measured elastic deformation 
properties are essentially the same with fine-grained
geomaterials. 

With heterogeneous materials (e.g., concrete, very coarse-
grained geomaterials and hard rocks having dominant 
discontinuities), the elastic modulus from wave velocity with a 
short wave length could be significantly larger than the 
statically determined average value of a given mass.

3) The size of quasi-elastic zone increases with an increase in:

i) the strain rate and the creep strain (due to the viscous
properties); and

ii) ageing effect.

Rate-independent behaviour: summary-2
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Rate-dependent stress-strain behaviour

■■■■ Isotach and non-Isotach types in drained TC

■ Viscous behaviour of sand in direct shear

■ Viscous behaviour of clay in 1D compression

■ Mechanism of non-Isotach viscous behaviour 

■ Rate-sensitivity and viscosity type parameter

■ Creep and stress relaxation 

■ Summary



.
Continuous ML at a constant strain rate 
ε0,
assumed to be the same for the four 
different viscous property types

1 3

ir ir irγ ε ε= −

1 3'/ 'R σ σ=



Isotach type: the strength during ML at constant strain rate 
increases with an increase in the strain rate; andH...

Isotach

relations
by continuous ML at 
a constant strain 
rate 10ε0

.
Continuous ML at a constant strain rate ε0

.

1 3

ir ir irγ ε ε= −

1 3'/ 'R σ σ=

irR γ−



The current stress is a unique function of instantaneous 
strain and its rate. Most classical & popular in modelling

Isotach

relation
by continuous ML at 
a constant strain 
rate 10ε0

.
Continuous ML at a constant strain rate ε0

.
Step increase in the strain 
rate by a factor of 10

irR γ−

1 3

ir ir irγ ε ε= −

1 3'/ 'R σ σ=
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Isotach behaviour in drained TC on undisturbed Pleistocene clay 
(e0= 0.81; PI= 41.1) and simulation

σ’h

σ’v

(Tatsuoka et al., 2008a, S&F)
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(Tatsuoka et al., 2008a, S&F)



TESRA type:  the strength during ML at constant strain rate 
is independent of strain rate; andH

Isotach

TESRA

relations
by continuous ML at 
a constant strain 
rate 10ε0

.
Continuous ML at a constant strain rate ε0

.

Very peculiar

irR γ−

1 3

ir ir irγ ε ε= −

1 3'/ 'R σ σ=



A positive stress jump upon a step increase in the strain 
rate decays with strain towards zero.

Isotach

TESRA

relations
by continuous ML at 
a constant strain 
rate 10ε0

.
Continuous ML at a constant strain rate ε0

.
Step increase in the strain 
rate by a factor of 10

Very peculiar

irR γ−
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ir ir irγ ε ε= −

1 3'/ 'R σ σ=



Isotach

TESRA

relations
by continuous ML at 
a constant strain 
rate 10ε0

.
Continuous ML at a constant strain rate ε0

.
Step increase in the strain 
rate by a factor of 10

Very peculiar

irR γ−

1 3

ir ir irγ ε ε= −

1 3'/ 'R σ σ=

TESRA= Temporary Effects of Strain Rate and 
strain Acceleration (i.e., rate of strain rate) 



TESRA behaviour in drained TC (σ’h= 400 kPa); 
saturated loose Silica No. 8 sand

(Kiyota & Tatsuoka, 2006, S&F; Tatsuoka et al., 2008a, S&F)
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(Kiyota & Tatsuoka, 2006, S&F; Tatsuoka et al., 2008a, S&F)
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Creep deformation and its 
simulation by the TESRA model

Kiyota  & Tatsuoka (2006), S&F



Isotach

Combined

TESRA

relations
by continuous ML at 
a constant strain 
rate 10ε0

.
Continuous ML at a constant strain rate ε0

.

Combined type; combining Isotach & TESRA types, 
the strength at  a constant strain rate increases with strain 
rate, andH

1 3

ir ir irγ ε ε= −

1 3'/ 'R σ σ=

irR γ−



Isotach

Combined

TESRA
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.
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A positive stress jump upon a step increase in the strain rate 
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Positive & Negative type: the strength decreases with an 
increase in the constant strain rate, andH..
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A positive stress jump upon a step increase in the strain 
rate decays with strain towards a negative value.
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relations
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rate 10ε0

.
Continuous ML at a constant strain rate ε0

.

Most peculiar
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Step increase in the strain 
rate by a factor of 10



P&N behaviour in drained TC (σ’h= 400 kPa); air-dried dense 
Albany sand (poorly-graded & round; D50= 0.30 mm, Uc= 2.22, 
Gs= 2.67, emax= 1.335 & emin= 0.73)

Tatsuoka et al. (2008a, S&F)
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Summary: At least, four different viscous property types by a 
wide variety of geomaterials in TC and PSC tests

Isotach

Combined

TESRA

P & N 

Broken curves:
relations

by continuous ML at 
a constant strain 
rate equal to 10ε0Step increase in the strain 

rate by a factor of 10
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Rate-dependent stress-strain behaviour

■ Isotach and non-Isotach types in drained TC

■■■■ Viscous behaviour of sand in direct shear

■ Viscous behaviour of clay in 1D compression

■ Mechanism of non-Isotach viscous behaviour 

■ Rate-sensitivity and viscosity type parameter

■ Creep and stress relaxation 

■ Summary
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Peak strength: essentially independent of shear 
displacement rate (i.e., TESRA viscosity）

(Duttine et al., 2009a; S&F)
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Residual strength: decreases with an increase in shear 
displacement rate (i.e., P&N viscosity)

(Duttine et al., 2009a; S&F)
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Significant rate effects
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The viscous property 
type changes with 
strain in a single test.
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Rate-dependent stress-strain behaviour

■ Isotach and non-Isotach types in drained TC

■ Viscous behaviour of sand in direct shear

■■■■ Viscous behaviour of clay in 1D compression

■ Mechanism of non-Isotach viscous behaviour 

■ Rate-sensitivity and viscosity type parameter

■ Creep and stress relaxation 

■ Summary
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Non-Isotach behaviour (combined type)  in 1D compression, 
saturated reconstituted Fujinomori clay 
(Kawabe et al. 2009a)
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Rate-dependent stress-strain behaviour

■ Isotach and non-Isotach types in drained TC

■ Viscous behaviour of sand in direct shear

■ Viscous behaviour of clay in 1D compression

■■■■ Mechanism of non-Isotach viscous behaviour 

■ Rate-sensitivity and viscosity type parameter

■ Creep and stress relaxation 

■ Summary



Non-Isotach behaviour in DS tests on unbound interfaces 
between various types of solid (i.e., rocks and others), 
Dieterich and Kilgore (1994) 
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