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Topics:

To illustrate significant roles of laboratory stress-strain
tests of geomaterial for developments in geotechnical
engineering research and practice,

several recent advances in our understanding of:

1) quasi-elastic stress-strain behaviour;

2) rate-dependent stress-strain behaviour; and

3) strength and stiffness of compacted soil related to
field fill compaction control and design

are presented.



1) quasi-elastic stress-strain behaviour;

2) rate-dependent stress-strain behaviour; and

3) strength and stiffness of compacted soil related to
field fill compaction control and design;

among other many important topics.
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Can we observe “rate-independent and reversible
(i.e., elastic) behaviour” at very small strains?
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Specimen (30 cm-dia.
& 60 cm-high)

Triaxial test:

Bedding error

“

Proximity
transducer

- Pressure cell

Local axial
strain

Local deformation
transducer (L.D.T.)

Axial strain
including B.E.

Specimen



Well-compacted air-dried Chiba gravel (crushed well-graded
angular sandstone from a quarry); D,,,= 38 mm, Dz;,= 3.5 mm
& U.=12.75

T
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A large number of data
sets show that “the shear
modulus at very small
strain, G,, of high-quality
undisturbed samples by
triaxial tests” is essentially
the same with “G; from
field V" evaluated under
otherwise the same
conditions.

Relative low G, of RCT
samples due to sample
disturbance

(Tatsuoka et al., 1999a&b)
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“More linear stress-strain relations” at higher strain rates
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Essentially rate-independent & reversible (i.e., elastic) stress-
strain behaviour at strains about 0.0001 % !
More rate-dependent behaviour at larger strains !
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General trends of behaviour:

1. The stress-strain relation approaches the elastic limiting line as
the strain rate increases.

2. The elastic zone becomes larger as the strain rate increases.
3. The elastic zone disappears at very low strain rates.

These trends can be described by the non-linear three-component
model.




The test results are interpreted and simulated by:

the non-linear three-component model (Di Benedetto
& Tatsuoka, 1997; Di Benedetto et al., 2002; Tatsuoka
et al., 2002, 2008)
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A large quasi-elastic zone develops upon the restart of ML at a
constant strain rate after creep deformation.

B The size becomes larger with an increase in the creep strain
and the strain rate during ML.
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0.125 %/min\

o'/l
\Y

Simulation

N
o

- Sustained loading

Drained TC test (o',= 400 kPa) on §
loose silica No. 8 sand |

RN
o
I

Effective principal stress ratio, R
€)]

0.0 0.5 1.0 15 20 25
Irreversible shear strain, v" (%)

(Kiyota & Tatsuoka, 2006, S&F; Tatsuoka et al., 2008a, S&F)




Multiple large quasi-elastic zones develop by ageing effects (i.e.,
bonding) in addition to creep deformation;
drained TC tests on compacted moist cement-mixed well-graded

gravelly soil (model Chiba gravel)

Loading histories

0 7
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(Tatsuoka et al. 2008b, S&F)
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Kinematic development of quasi-elastic zone by ageing effects
in addition to creep deformation at multiple stress states
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Kinematic development of yield locus by ageing and creep:

- initial curing for 9 days at stress point O; and

- initial curing for 7 days at O + re-curing for 2 days at stress
points B, C,D & E (cement-mixed model Chiba gravel)

Peak stress states (some difference
by different loading histories)
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Rate-independent behaviour: summary-1

1) The elastic deformation characteristics can be evaluated
by not only dynamic tests but also static tests.

‘Static’ & ‘dynamic’: terminologies for systems,
not for material properties

Static Young’s modulus & dynamic Young’s modulus:
should not be used.

Static and dynamic measurements of Young’s modulus: OK'!




Rate-independent behaviour: summary-2

2) Statically and dynamically measured elastic deformation
properties are essentially the same with fine-grained
geomaterials.

With heterogeneous materials (e.g., concrete, very coarse-
grained geomaterials and hard rocks having dominant
discontinuities), the elastic modulus from wave velocity with a
short wave length could be significantly larger than the
statically determined average value of a given mass.

3) The size of quasi-elastic zone increases with an increase in:

1) the strain rate and the creep strain (due to the viscous
properties); and

i) ageing effect.



1) quasi-elastic stress-strain behaviour;

2) rate-dependent stress-strain behaviour; and

3) strength and stiffness of compacted soil related to
field fill compaction control and design;

among other many important topics.
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Rate-dependent stress-strain behaviour

M Isotach and non-lsotach types in drained TC
B Viscous behaviour of sand in direct shear

B Viscous behaviour of clay in 1D compression

B Mechanism of non-Isotach viscous behaviour
B Rate-sensitivity and viscosity type parameter

B Creep and stress relaxation

B Summary



Continuous ML at a constant strain rate
R=0,"0,' €0»

assumed to be the same for the four
different viscous property types

ir ir ir

y =& — &




Isotach type: the strength during ML at constant strain rate
Increases with an increase in the strain rate; and......
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The current stress is a unique function of instantaneous
strain and its rate. Most classical & popular in modelling
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(€,= 0.81; PI= 41

.1) and simulation

Isotach behaviour in drained TC on undisturbed Pleistocene clay
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Creep deformation
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TESRA type: the strength during ML at constant strain rate
Is iIndependent of strain rate; and...
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A positive stress jump upon a step increase in the strain
rate decays with strain towards zero.

.
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TESRA= Temporary Effects of Strain Rate and
strain Acceleration (i.e., rate of strain rate)
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TESRA behaviour in drained TC (o', = 400 kPa);

saturated loose Silica No. 8 sand
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(Kiyota & Tatsuoka, 2006, S&F; Tatsuoka et al., 2008a, S&F)
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Combined type; combining Isotach & TESRA types,
the strength at a constant strain rate increases with strain

rate, and...
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A positive stress jump upon a step increase in the strain rate
decays with strain to a smaller positive non-zero value
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Positive & Negative type: the strength decreases with an
Increase in the constant strain rate, and

Isotach \
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A positive stress jump upon a step increase in the strain
rate decays with strain towards a negative value.

Isotach \
R=o0,"0,’ _ -
Most peculiar _-"

A

-~ Combined

TESRA W

-l““‘P&N )

R — 7/” relations

by continuous ML at
a constant strain

A eeererrrrrr e rennnn———————aaaaaay .| rate 10¢,

e : Step increase in the strain :
4 rate by a factor of 10

Continuous ML at a constant strain rate ¢,

ir

r __ _ir




P&N behaviour in drained TC (o', = 400 kPa); air-dried dense
Albany sand (poorly-graded & round; D;,= 0.30 mm, U= 2.22,
G,=267,¢e,,~=1335&e,,=0.73)
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Interpretation of the peculiar test result
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Summary: At least, four different viscous property types by a

wide variety of geomaterials in TC and PSC tests
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Rate-dependent stress-strain behaviour

B |sotach and non-Isotach types in drained TC

M Viscous behaviour of sand in direct shear
B Viscous behaviour of clay in 1D compression
B Mechanism of non-Isotach viscous behaviour
B Rate-sensitivity and viscosity type parameter
B Creep and stress relaxation

B Summary



Air-dried dense Toyoura sand
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Peak strength: essentially independent of shear
displacement rate (i.e., TESRA viscosity)
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Residual strength: decreases with an increase in shear
displacement rate (i.e., P&N viscosity)
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Significant rate effects
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Rate-dependent stress-strain behaviour

B |sotach and non-Isotach types in drained TC

B Viscous behaviour of sand in direct shear

M Viscous behaviour of clay in 1D compression
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B Rate-sensitivity and viscosity type parameter

B Creep and stress relaxation

B Summary



1D compression changing
the strain rate, saturated
kaolin made from slurry
(Isotach type) (Kawabe et
al. 2009Db).
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1D compression changing
the strain rate, saturated
kaolin made from slurry
(Isotach type) (Kawabe et

al. 2009b).
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Non-Isotach behaviour (combined type) in 1D compression,
saturated reconstituted Fujinomori clay
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Rate-dependent stress-strain behaviour

B |sotach and non-Isotach types in drained TC

B Viscous behaviour of sand in direct shear

B Viscous behaviour of clay in 1D compression

B Mechanism of non-lsotach viscous behaviour
B Rate-sensitivity and viscosity type parameter

B Creep and stress relaxation
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Non-Isotach behaviour in DS tests on unbound interfaces
between various types of solid (i.e., rocks and others),
Dieterich and Kilgore (1994)
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