Soil Mechanics II
土の力学II

Hiroyuki Tanaka
田中洋行
Soil Mechanics

- Geotechnical Engineering
- Meaning of “Geo” The earth, or Ground
- Geology
- Geo-sciences, chemistry, graphy, so on.

- This lecture is proceeding based on “土質力学入門”, written by Prof. 三田地利之.
Shear strength
Evaluation of strength

Concrete

Compression
Small tensile strength

Steel

Bending Moment

Page number of the text book: P 119
Criteria for Soil

Vertical Force: N
Shear Force: S
Normal Stress: $\sigma_n = N/A$
A: Cross Area
Shear Stress: $\tau = S/A$

$\tau = c + \sigma_n \tan \phi$

Coulomb’s Criteria

Normal Stress: $\sigma_n = N/A$
A: Cross Area
Shear Stress: $\tau = S/A$

Boundary Criteria

$\tau = c + \sigma_n \tan \phi$

C: cohesion, ϕ: friction angle

P129
Shear and Normal Stresses

\[\sigma = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\alpha - \tau_{xy} \sin 2\alpha \]

\[\tau = \frac{\sigma_x - \sigma_y}{2} \sin 2\alpha + \tau_{xy} \cos 2\alpha \]

We can find \(\alpha \) for \(\tau = 0 \)

When \(\tau = 0 \), we call this plane “Principal” Plane.

Principal stresses: The maximum and minimum principal stresses: \(\sigma_1 \) and \(\sigma_3 \)

\(\sigma \) and \(\tau \) are changed according to an angle
Mohr’s Stress Circle

Principal Stress

σ₁

σ₃

σ₁

σ₃

σ

τ

τ

σ

σ

Principal Stress

P122-123
図7・4 任意の面上の応力とモールの応力円
How to draw the Mohr’s circle

Positive
σ: compression
τ: anti-clockwise
Measuring parameters c, ϕ

• **Laboratory Test**
 – Sampling from a borehole
 – Direct Shear Test
 – Triaxial (Unconfined compression) Test

• **In situ Test**
 – No sample
 – Vane Test
 – Standard Penetration Test (N value)
Direct Shear Test

Merit: Easily understand
Demerit: stress and strain are not uniform
Control of drainage is difficult

\[\tau = c + \tan \phi \]
Triaxial Test

Deviation stress \((\sigma_1 - \sigma_3)\)

- **Tri:** Three
- **Axial:** Axis

No shear stress because of water

Principal plane

Lateral Pressure, Cell pressure

\[\sigma_2 = \sigma_3 \]
σ₁
σ₃
α
τ
Plane acting the maximum principal stress

\[\tau = c + \sigma \tan \phi \]

Failure Envelopement

Failure point

Pole

\[\sigma_1 \]

\[\sigma_3 \]

\[\alpha \]

\[\sigma_1 \]
Failure criterion of Mohr and Coulomb

In stead of using σ and τ, the failure criterion is presented by σ_1 and σ_3

$$\sigma_1 - \sigma_3 = \frac{(\sigma_1 + \sigma_3) \sin \phi + 2c \cdot \cos \phi}{2}$$
Three conditions by Drainage

- **Unconsolidated Undrained (UU)**
 - Consolidation
 - Shear
- **Consolidated Undrained (CU)**
- **Consolidated Drained (CD)**

Principle of Effective Stress

The behavior including the strength is governed by the effective stress.
\[\sigma' = \sigma - u \]
\(\sigma' \): Effective stress, \(\sigma \): Total stress
Performance of UU Test

\(\sigma' \): Effective stress

\(\sigma \): Total stress

Failure envelop: \(\phi = 0 \)

Cu or Su
Apparent cohesion, or undrained shear strength

Fully Saturated

\(\sigma' \): Effective stress

\(\sigma \): Total stress
Unconfined Compression Test

Sometimes called Uniaxial Test

\[\sigma_1: \text{At failure, we call this strength } q_u \]

unconfined compression strength

\[\sigma_3 = 0 \]

In practice, \(c_u \) is called “cohesion”, or apparent cohesion.

\[C_u = \frac{q_u}{2} \]

Failure envelop: \(\phi = 0 \)

\(\sigma \): Total stress

P140-142
Young Modulus, E_{50} and Sensitivity

\[E_{50} = \frac{\sigma_{50}}{\varepsilon_{50}} \]

\[\text{Sensitivity} = \frac{q_u}{q_r} \]
Performance of CU Test

After consolidation, $\sigma_3 = \sigma'_3$

Pore pressure generated by shearing

Undrained shear strength S_u
After consolidation, \(\sigma_3 = \sigma'_3 \)

If Normally consolidated

For Japanese clays, \(su/p = 0.3 \sim 0.35 \)
Performance of CD Test

σ'_3 does not change during shearing

Total and effective stresses are always the same because of no excess pore water pressure
Effective stress and Total stress analysis

• The effective stress analysis (ESA) seems more reasonable.

• Permeability is high (sandy soil), the ESA is applicable. Sand

• For clayey soil, effective stress or pore water pressure is unknown. Total stress analysis, in another word, $\phi=0$ method Clay
Shear strength for Total stress analysis

- Undrained shear strength
- For low OCR, i.e., negative dilatancy, undrained shear strength (UC or UU test) always is smaller than the drained shear strength.
- For long consolidation, the increase in the undrained shear strength can be expected (CU test)
S_u measured by in situ test

Vane test
Dilatancy

• Volume change during shearing
• Performance is changed under undrained or drained conditions
 – Undrained:
 • No volume change $\Delta V = 0$
 • Pore water pressure change Δu
 – Positive: Negative Negative: Positive
 – Drained:
 • No Pore water pressure $u = 0$
 • Volume change ΔV
 – Positive: Expand Negative: Compressive
Critical Void Ratio

Void ratio, \(e \)

\(e_{\text{crit}} \)

- Small
- Dense, \(\gamma \): unit weight large
- Large
- Loose, \(\gamma \): small

Dilatancy

- Positive
- Drained: Volume change
- Expands

- Negative
- Undrained: Pore water pressure
- Compresses
Pore water Pressure

Excess pore water pressure: Deviator Stress: shear

\[\Delta u = B\{\Delta \sigma_3 + A(\Delta \sigma_1 - \Delta \sigma_3)\} \]

Skempton’s A and B Coefficient: B=1 for saturated soil, A: dependent on Dilatancy
Dilatancy for sand and clay

OCR: Over-Consolidation Ratio

\[\text{OCR} = \frac{p_c}{p_{vo}} \]

- **Sand**
 - \(e < e_{\text{crit}} \): large, loose
 - \(e > e_{\text{crit}} \): small, dense
 - **Drained**: Volume change
 - **Positive**: Expand
 - **Negative**: Compression
 - **Undrained**: Pore water pressure
 - **Positive**: Skempton’s A: Low or negative
 - **Negative**: A: High

- **Clay**
 - **Drained**: Volume change
 - **Positive**: Expand
 - **Negative**: Compression
 - **Undrained**: Pore water pressure
 - **Positive**: OCR: 1 ~ 2
 - Slightly Normally
 - **Negative**: OCR: High
 - Heavily OverConsolidated

P 144-147, 150-151
Drained and Undrained strength

\[\tau \]

\[c' \]

\[\phi' \]

CD

CU: Negative Dilatancy

CU: Positive Dilatancy
Liquefaction

If $\sigma'_3 = 0$, fully liquefied

$\sigma'_3 = \sigma_3 - u$

constant
increase

σ_{1d}: 変動 σ_{3d}: 一定

P147-149
Counter measurements for liquefaction

• Densification
 – Positive dilatancy. No positive water pressure
 – Vibration

• Lowering the ground water table
 – No water

• Stabilized with cement
 – Cohesion $\tau=c'+(\sigma-u)\tan\phi$
Earth Pressure
Earth Pressure
Relating the movement of a wall

Active Earth Pressure
Earth pressure at rest
Passive Earth Pressure

Retaining wall

P160, 169
How to calculate the earth pressure?

• Rankine’s Method
 – Plastic equilibrium
 – Theoretically, limitation of its application

• Coulomb’s Method
 – Stability of soil mass
 – Trial calculation, more extensive application
Rankine method

\[\sigma_v = \gamma z; \quad \gamma = \text{unit weight of soil}, \ z = \text{depth} \]

Active State

Passive State
Rankine method

\[\sin \phi = \frac{\sigma_p - \gamma z}{\sigma_p + \gamma z} \]

\[K_p = \frac{\sigma_p}{\gamma z} = \frac{1 - \sin \phi}{1 + \sin \phi} = \tan^2 \left(45 + \frac{\phi}{2}\right) \]

Using half angle formulae

\[K_a = \frac{\sigma_a}{\gamma z} = \tan^2 \left(45 - \frac{\phi}{2}\right) \]

Important Value: \(\phi = 30^\circ \) \(K_a = 1/3, K_p = 3.0 \)
Earth Pressure at Rest

For conventional ground

\[\sigma_v > \sigma_h \]

\[K_o = \frac{\sigma^h}{\sigma_v} \]

- \(K_o \): Coefficient of earth pressure at rest

Depending on OCR. For NC (OCR=1) \(K_o = 1 - \sin \phi \)
Earth Pressure acting on the wall

Total Pressure: \(P_a = \gamma_t H \tan^2 \left(45^\circ - \frac{\phi}{2}\right) H \frac{1}{2} = \frac{1}{2} \gamma_t H^2 \tan^2 \left(45^\circ - \frac{\phi}{2}\right) \)
Rankine method $\phi=0$

$C = \frac{q_u}{2}$

$\sigma_a = \gamma z - 2c$

$\sigma_p = \gamma z + 2c$

For Clay
With surcharge

\[h = \frac{q}{\gamma_t} \]

\[q \tan^2 \left(45^\circ - \frac{\phi}{2} \right) \gamma_t H \tan^2 \left(45^\circ - \frac{\phi}{2} \right) \]
Change in properties or existence of water table

Earth pressure
(Effective stress)

Hydraulic pressure
Coulomb’s Method

\[\delta : \text{Friction between the ground and the wall in Rankine’s theory, cannot take account.} \]
Water Level

γ = 20 kN/m³
γ'(γ_{sub}) = 10 kN/m³

Sheet pile

Active Earth Force

Passive Earth Force

Check for Embedded Depth:

\[2 \times l_a < 3 \times l_p \]
The embedded depth is enough?

Active Earth Pressure

\[P_{a1} = \frac{20 \times 3}{2} = 30 \text{kN/m} \]

\[l_{a1} = \frac{2}{3} \times 3 = 2 \text{m} \]

Passive Earth Pressure

\[P_{a2} = 20 \times 9 = 180 \text{kN/m} \]

\[l_{a3} = 3 + \frac{9}{2} = 7.5 \text{m} \]

\[P_{a3} = \frac{30 \times 9}{2} = 135 \text{kN/m} \]

\[l_{a3} = 3 + \frac{2}{3} \times 9 = 9 \text{m} \]

Center of Gravity

\[l_p = 9 + \frac{2}{3} \times 3 = 11 \text{m} \]

\[P_p = \frac{90 \times 3}{2} = 135 \text{kN/m} \]

\[P_p \times l_p = 135 \times 11 = 1485 \text{ kN} < P_a \times l_a = 30 \times 2 + 180 \times 7.5 + 135 \times 9 = 2625 \text{ kN} \]

Unstable
Stability of slope
Evaluation of the slope

Safe or Danger?

SF or F_s : Safety Factor = \[\frac{\text{Resistance}}{\text{Drive Force}} \]

Resistance: Shear Strength

Drive Force: Gravity, Seismic
Stability of infinitive slope

\[W = 1 \times \cos i \times h \times \gamma_t \]
\[N = W \times \cos i \]
\[S = W \times \sin i \quad \text{Driving Force} \]
\[R = N \times \tan \phi \quad \text{Coulomb’s criteria: Resistance Force} \]

FS = \frac{R}{S} = \frac{\cos^2 i h \gamma_t \tan \phi}{\cos i h \gamma_t \sin i} = \frac{\tan \phi}{\tan i}

FS = 1, \ i = \phi \quad \phi: \text{angle of repose}
Circle Failure method

$\phi=0$: Short term

$$\text{Resistance moment} = (FE \times s_u \text{ or } c_u) \times R$$

$$\text{Drive Moment} = W \times x$$
Circle Failure method
Slice method

\[SF = \frac{\sum \text{Moment for Resistance}}{\sum \text{Moment for Drive}} \]

Resistance moment = \((FE \times s_u \text{ or } c_u)xR\)

Drive Moment = \(W \times x\)

P196
Search for the smallest SF

Critical Circle
Tailor’s Chart
Stability Factor N_s

$$N_s = \frac{\gamma_t H_c}{C}$$

Stability Number

$N_s = \frac{\gamma_t H_c}{C}$

- γ_t: N/m3 x m
- H_c: N/m2
- C: No dimension

Slope angle

Toe Failure
Base Failure
Slope Failure
Failure pattern

Base Failure Toe Failure Slope Failure
Bearing Capacity

Shallow Foundation
Deep Foundation
Pattern of Failure

Bearing Capacity: Ultimate: Q_u
Allowable: $Q_{al} = Q_u / SF$
SF: Settlement, uncertainty for soil parameters
Theoretical Value of Prandtl

- **I Active Zone**
- **II Transition Zone**
- **III Passive Zone**

\[\alpha \text{: dependent on the roughness of the footing.} \]

- Smooth: \[\alpha = 45^\circ + \frac{\phi}{2} \]

Important value: \(\phi = 0 \), \(Q_u = 2b q_u \), \(q_u = (2 + \pi)c = 5.14c \)
Calculation of Q

$Q = qB = ?$
Terzaghi’s equation

\[q_u = acN_c + \beta \gamma_1 BN \gamma + \gamma_2 D_f N_q \]

Cohesion \((C_u, S_u)\) Friction Surcharge

Shape Factor

<table>
<thead>
<tr>
<th>基礎形状</th>
<th>連続</th>
<th>正方形</th>
<th>長方形</th>
<th>円形</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>1.0</td>
<td>1.3</td>
<td>(1 + 0.3 \frac{B}{L})</td>
<td>1.3</td>
</tr>
<tr>
<td>(\beta)</td>
<td>0.5</td>
<td>0.3</td>
<td>(0.5 - 0.2 \frac{B}{L})</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Continuous Square Rectangular Circle

Factors

<table>
<thead>
<tr>
<th>(\phi)</th>
<th>(N_c)</th>
<th>(N_\gamma)</th>
<th>(N_q)</th>
<th>(N_c)</th>
<th>(N_\gamma)</th>
<th>(N_q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0(^\circ)</td>
<td>5.71</td>
<td>0</td>
<td>1.00</td>
<td>3.81</td>
<td>0</td>
<td>1.00</td>
</tr>
<tr>
<td>5</td>
<td>7.32</td>
<td>0</td>
<td>1.64</td>
<td>4.48</td>
<td>0</td>
<td>1.39</td>
</tr>
<tr>
<td>10</td>
<td>9.64</td>
<td>1.2</td>
<td>2.70</td>
<td>5.34</td>
<td>0</td>
<td>1.94</td>
</tr>
<tr>
<td>15</td>
<td>12.8</td>
<td>2.4</td>
<td>4.44</td>
<td>6.46</td>
<td>1.2</td>
<td>2.73</td>
</tr>
<tr>
<td>20</td>
<td>17.7</td>
<td>4.6</td>
<td>7.48</td>
<td>7.90</td>
<td>2.0</td>
<td>3.88</td>
</tr>
<tr>
<td>25</td>
<td>25.1</td>
<td>9.2</td>
<td>12.7</td>
<td>9.86</td>
<td>3.3</td>
<td>5.60</td>
</tr>
<tr>
<td>30</td>
<td>37.2</td>
<td>20.0</td>
<td>22.5</td>
<td>12.7</td>
<td>5.4</td>
<td>8.32</td>
</tr>
<tr>
<td>35</td>
<td>57.9</td>
<td>44.0</td>
<td>41.4</td>
<td>16.8</td>
<td>9.6</td>
<td>12.8</td>
</tr>
<tr>
<td>40</td>
<td>95.6</td>
<td>114.0</td>
<td>81.2</td>
<td>23.2</td>
<td>19.1</td>
<td>20.5</td>
</tr>
<tr>
<td>45</td>
<td>172</td>
<td>320</td>
<td>173</td>
<td>34.1</td>
<td>27.0</td>
<td>35.1</td>
</tr>
</tbody>
</table>

General Failure **Local Failure**

\(Q_u = Bq_u\)
Deep Foundation (Piles)
Types of Pile classified by support system

- Skin Friction
- Point Resistance
- Pointed Pile Friction Pile
- Friction Pile

P217
Design of Pile

• Using N value (Standard Penetration Test).
• Empirical equation

\[R_u = \left(40 \bar{N} A_p + \frac{1}{5} \bar{N}_s A_s + \frac{1}{2} \bar{N}_c A_c \right) \times 9.8 \]

- \(A_p \): cross sectional area
- \(A_s \): surface area of the sand layer
- \(A_c \): surface area of the clay layer
Standard Penetration Test (SPT)

- **Hammer (Mass = 63.5 kg)**
 - Height = 76 cm

- **Knocking Head**

Definition of N value

How many blows for penetration of 30 cm

Pile Group

\[R_T = E \cdot n \cdot R_u \]

- **\(R_T \):** Bearing capacity of the pile group
- **\(R_u \):** Bearing capacity of the single pile
- **\(n \):** Number of the Pile
- **\(E \):** Efficiency of the pile group \(<1.0\)
Negative Skin Friction

Conventional case

Reclaimed Ground

Positive Friction

Negative Friction