ISSMGE TC 202, 2nd Japan-China Mini Workshop on High Speed Railway Geotechnics

Mechanical Properties of Reinforced Soil after Multiple Freeze-Thaw Cycles

Liu Jiankun, Professor Beijing Jiaotong University

• August 28, 2017, Hokkaido University

Outline

- Lime-Cement Modified Soil for HSR
- Fiber Reinforced Soil
- Development of Dynamic Direct Shear
- Frost in HSR in China
- Summary

(原北方交通大学) Beijing Jiaotong University (Northern Jiaotong University)

2nd Japan-China Mini Workshop High Speed Railway Geotechnics

Lime and Cement Modified Soil for Harbin-Dalian HSR

Experimental Study on the Dynamic Properties of Cement- and Lime-Modified Clay Subjected to Freeze-Thaw Cycles. Cold Regions Science and Technology. Vol.61,No.1(2010),29-33. Web of Science

(原北方交通大学) Beijing Jiaotong University (Northern Jiaotong University)

Critical Dynamic Stress

Fig. 6. Critical dynamic stress vs. blend ratio (20 kPa).

Fig. 8. Critical dynamic stress of lime-modified soil and clay vs. freeze-thaw cycles (confining pressure is 20 kPa).

(原北方交通大学) Beijing Jiaotong University (Northern Jiaotong University)

0.58

where $\sigma_{\rm dcrb}$ is the critical dynamic stress before a freeze-thaw cycle, and $\sigma_{\rm dcra}$ is the critical dynamic stress after a freeze-thaw cycle.

Table 3

10

Freeze-thaw Critical dynamic stress attenuation coefficient Clay number of cement soil soil 3% 12% 6% 9% 1 0.63 0.83 0.87 0.87 0.65 3 0.59 0.78 0.84 0.83 0.52 10 0.82 0.58 0.73 0.80 0.35 Critical dynamic stress attenuation coefficient Freeze-thaw number of lime soil 3% 6% 9% 12% 0.76 0.80 0.80 0.68 1 3 0.71 0.70 0.71 0.68

0.63

Critical dynamic stress attenuation coefficient of modified soil and clay subjected to freeze-thaw cycles.

Experimental Study on the Dynamic Properties of Cement- and Lime-Modified Clay Subjected to Freeze-Thaw Cycles. Cold Regions Science and Technology. Vol.61,No.1(2010),29-33. Web of Science

0.67

0.68

The effect of freeze-thaw cycles on the static properties of modified Clay using Solidifying Agent

- Solidifying Agent, "Aught-Set" 3%,
- Freezing Temperature: -2°C, -5°C, -10°C, -15°C, -20°C
- Confining Pressure 20KPa

- The static strength of unmodified soil is 262kPa.
- the static strength of modified soil is 876kPa.

The effect of freeze-thaw cycles on the static properties of modified Clay using Solidifying Agent

 The static strength of modified soil with different number and negative temperature of freeze-thaw cycles

The effect of freeze-thaw cycles on the dynamic properties of modified soil

 The relationship between critical dynamic stress, CDS and the freeze-thaw cycles

(原北方交通大学) Beijing Jiaotong University (Northern Jiaotong University)

Freeze-Thaw Effect on Fiber-Reinforced Soil

Synthetic Materials, Fibers

Synthetic Materials, Geosynthetics

Permeable, Geosynthetics

- Long service life,
- Light weight
- Increase strength
- Lower therml conductivity

1. Glass fiber

Effective bulk density, hardness, stability, and flexibility and stiffness.

2. Basalt fiber

Stabilization of road and highway to maintain the pavement life by decreasing the effects of cracks caused by excessive traffic loading, age hardening and temperature changes.

(原北方交通大学) Beijing Jiaotong University (Northern Jiaotong University)

	Soil	W _{opt}	LL	PI	MDD		Grain Composition* (%)			
	Properties	(%)	(%)	(%)	(gr/cm ³)	d>0.01	0.01 ≥d≥0.005	0.005≥d>0.0 5	0 d≤0.001	
R1	 -Physical properties -Mass loss -Changes of water content -Static triaxial test 	12.9	30.04	12.09	1.93	78.87	7.96	7.30	5.86	
R2	-Physical properties -Changes of height -Thermal conductivity test	18.3	28.29	8.05	1.80	67.29	11.16	15.95	5.59	
	-Dynamic triaxial test						Basalt Fiber		Glass I	
*Cl	assified as CL according to	Fiber Properties			Values			Valu		
		Modulus of elasticity				86.2 GPa		74 G		
2		Breaking extension				3.1 %		4.7 %		
2nd Japan-China Mini Workshop on High Speed Railway Geotechnics		Fiber diameter				10 µm		10 µm		
		Line	Linear density				60-4,200 tex		40-4,200 te	
		Length Tensile strength				15 mm		15 m		
						3920 MPa		3450 MI		
		Thermal conductivity			0.03 W/m·K			0.04 W/m·		

Materials	(χ_w)
Glass Fiber (GF)	0%, 0.5%, 1%
Basalt Fiber (BF)	0%, 0.5%, 1%
Glass Fiber (GF)	0%, 0.5%, 1%
Basalt Fiber (BF)	0%, 0.5%, 1%
Glass Fiber (GF)	0%, 0.5%, 1%
Basalt Fiber (BF)	0%, 0.5%, 1%

Series	Number of	Dimension of test specimen (mm)		Freeze-thaw	Temperature		Tested Temperature
	specimen	Height	Diameter	cycles	Freezing Thawing		
Mass loss	12	80	39.1	0, 15	-20 °C	20 °C	~20 °C
Change of water content	12	80	39.1	0, 2, 5, 10, 15	-20 °C	20 °C	~20 °C
Change of height	12	80	39.1	0, 2, 5, 10, 15	-15 °C	20 °C	~20 °C
Thermal conductivity test	60	60	61.8	0, 2, 5, 10, 15	-15 °C	20 °C	20°C, 0°C, -5°C, -15°C
Static triaxial test	150	80	39.1	0, 2, 5, 10, 15	-20 °C	20 °C	~20 °C
Dynamic trixial test	150	125	61.8	0, 2, 5, 10, 15	-15 °C	20 °C	~20 °C

- As $T \downarrow \rightarrow$ ice content in the soil \uparrow , *the density of the ions changes* in the phase boundary.
- During the thawing process, exchange cations exhibit the behavior of rehydration.
- $\gamma \uparrow \rightarrow \lambda \uparrow$

Static UU Triaxial

No	σ_c	Xw	4FA	8FA	N	$(\sigma_1 - \sigma_3)_{max}$
1	\rightarrow	0	↑ (0	0	1
2	\rightarrow	0	0	↑ (0	↑ (
3	\rightarrow	1	↑	0	0	↑ (
4	\rightarrow	↑	0	↑ (0	↑ (
5	↑	0/ ↑	↑	↑	0	↑ (
6	\rightarrow	0	↑	0	↑	\rightarrow
7	\rightarrow	0	0	↑ (↑	↑ (
8	\rightarrow	↑	↑	0	↑	↑
9	\rightarrow	↑	0	↑	↑ (↑ (

2nd Japan-China Mini Workshop on High Speed Railway Geotechnics

(原北方交通大学) Beijing Jiaotong University (Northern Jiaotong University)

(原北方交通大学) Beijing Jiaotong University (Northern Jiaotong University)

2nd Japan-China Mini Workshop on High Speed Railway Geotechnics

	Reduction ratio of cohesion		Reduction ratio of cohesion
0.5% GF	43%	8% FA	48%
1% GF	25%	4% FA-0.75 %LF	37%
0.5% BF	49%	8% FA-0.5 %LF	6%
1% BF	59%		

a resilient modulus $< 55 \text{ kPa} \rightarrow \text{negligible freeze-thaw effects}$ a resilient modulus> 103 KPa \rightarrow a decrease of more than 50 %

Development of Dynamic Direct Shearing Box

Dynamic direct shear test — Temperature-controlled shear box

Schematic of temperature-controlled direct shear box

Dynamic direct shear test ——

Dynamic actuator and connect to the workbench

Design Project	Load amplitude	Piston stroke	Vibrational frequency
	range (kN)	(mm)	(Hz)
Performance Parameters	1~20kN	-50mm~50mm	0.5~5

Unit name	Performance Parameters
Variable	Working pressure: 7.0MPa, maximum flow: 72L/min,
pump	System accuracy of filtration 25µ
Pump motor	Motor power:15kW
Servo valve	Deflector jet valve: SFL223, no-load flow under 7MPa:60L/min
Actuator	Rated working pressure :7MPa, Piston stroke: 200mm, Piston diameter:70mm, Rod diameter:32mm
Fuel tank	Capacity:500L
	Water Cooling, column tubular oil cooler:2LQFL, Structural style: Tube-fin condenser.
Cooling	Cooling area:0.65m2, Working Pressure:1MPa,
tank	Oil pressure drop≤0.1MPa, Water pressure drop≤0.015MPa,
	Working temperature of water:25~30°C, Working temperature of oil<100°C,

Dynamic direct shear test —— Measuring system

Displacement and Force Measuring Device

Connection pin

Temperature Sensor

Dynamic direct shear test —— Validation

2nd Japan-China Mini Workshop on High Speed Railway Geotechnics

Dynamic direct shear test —— **Compared with the dynamic triaxial apparatus**

Comparison of hysteresis curve in two tests

Comparison with Triaxial Tests

- Modulus of Frozen Soil
- Damping Ratio of Frozen Soil

2nd Japan-China Mini Workshop on High Speed Railway Geotechnics

Temperature controlled Dynamic triaxial test

Dynamic modulus —— Influenced by **Temperature**

Temperature Controlled Dynamic Direct shear test

 $G_{\text{dmax}} = A_1 \cdot \exp(-|T_c|/B_1) + G_{\text{d0}}$

$$G_{\text{dmax}} = A_{\text{l}} \cdot \exp(-|T_c|/B_{\text{l}}) + G_{\text{d0}}$$

$$\int_{N=30}^{\sigma_3=100\text{kpa}} N = 30$$
Temperature controlled
$$G_{\text{dmax}} = -118.303 \exp(-|T_c|/0.328) + 284.184$$

$$R^2 = 0.9901$$
Temperature Controlled
$$G_{\text{dmax}} = -113.873 \exp(-|T_c|/0.308) + 265.653$$

$$R^2 = 0.9974$$

Dynamic modulus ——Influenced by **Confining pressure**

2nd Japan-China Mini Workshop on High Speed Railway Geotechnics

Dynamic modulus —— Influenced by Moisture content

Test parameters	Dynamic tri-axial test	Dynamic direct shear
Temperature(°C)	-1.5	-1.5
Confining pressure(Mpa)	0.5	0.5
Moisture content(%)	13, 16, 18, 20	13, 16, 18, 20
Vibration frequencies(Hz)	1	1

Dynamic modulus —— Influenced by Loading Cycles

Fig. Reference shear strain vs. vibration times curve

$$G_{\rm dmax} = G_0 + G_1 N$$

2nd Japan-China Mini Workshop on High Speed Railway Geotechnics

Test parameters	Dynamic tri-axial test	Dynamic direct shear
Temperature(°C)	-1.5	-1.5
Confining pressure(Mpa)	0.5	0.5
Moisture content(%)	18	18
Vibration frequencies(Hz)	0.2, 0.5, 1.0, 3.0, 5.0	0.2, 0.5, 1.0, 3.0, 5.0

Dynamic modulus —— A function of Temperrature, Confining pressure and load cycles

$$G_{\rm dmax} = f(T_c, \sigma_3, N)$$

$$G_{\text{dmax}} = 142.21 + 187.42T_c - 63.81T_c^2$$

+ $49.46 \left(\frac{\sigma_3}{100}\right) - 1.98 \left(\frac{\sigma_3}{100}\right)^2 - 6.47 \left(\frac{N}{10}\right)$
 $R^2 = 0.9852$

Temperature Controlled Dynamic triaxial test

$$G_{\text{dmax}} = 133.07 + 195.75T_c - 79.95T_c^2 + 58.18 \left(\frac{\sigma_v}{100}\right) - 1.66 \left(\frac{\sigma_v}{100}\right)^2 - 7.31 \left(\frac{N}{10}\right) \\ R^2 = 0.9827$$

Damping ratio — **Temperature**

Damping ratio — A function of Temperature, Confining pressure and load cycles

$$\lambda_{\rm dmax} = f(T_c, \sigma_3, N)$$

$$\lambda_{\text{dmax}} = 0.3948 - 0.06074T_c + 0.0174T_c^2$$
Dynamic triaxial test
$$-0.0089 \left(\frac{\sigma_3}{100}\right) + 0.00019 \left(\frac{\sigma_3}{100}\right)^2 + 0.00429N$$

$$R^2 = 0.9708$$

$$\lambda_{dmax} = 0.4156 - 0.06744T_c + 0.02078T_c^2$$

Direct shear test
$$-0.00744\left(\frac{\sigma_3}{100}\right) + 0.005667\left(\frac{\sigma_3}{100}\right)^2 + 0.004457N$$
$$R^2 = 0.9838$$

Frost Related Problems : Examples

Cold Regions

Railway Geotechnics (秦一沈,2000)

- The First High Speed Railway Experiment in China
- 200KM/h
- Ballast

Chinese frozen soil distribution and HSR plan

(原北方交通大学) Beijing Jiaotong University (Northern Jiaotong University)

(原北方交通大学) Beijing Jiaotong University (Northern Jiaotong University)

Unfrost suseptable Fills Used More Detailed Classification of Soil Frost Suseptability. 5%, 15%, 30%

(原北方交通大学) Beijing Jiaotong University (Northern Jiaotong University)

Deformation source:

Subgrade, k, n, K30, Evd, Ev2

Base : Modification

Maximum frost heave deformation

After Niu 2014

Date/ year-month-day

🛞 संहर्व

(原北方交通大学) Beijing Jiaotong University (Northern Jiaotong University)

试验	含水率(%)	细颗粒(%)	冷端温度 (℃)	压实度	冻胀量(㎜)	冻结深度(cm)	冻胀率(%)
1	5	3	-5	0, 90	0, 65	9, 56	0, 68
2	5	5	-7	0, 93	1, 14	12, 67	0, 90
3	5	7	-10	0, 97	0, 67	18, 61	0, 36
4	7	3	-7	0, 97	1, 8	13, 15	1, 37
5	7	5	-10	0, 90	1, 83	17, 42	1, 05
6	7	7	-5	0, 93	1, 54	11, 09	1, 39
7	10	3	-10	0, 93	1, 38	17, 25	0, 8
8	10	5	-5	0, 97	1, 87	10, 17	1, 84
9	10	7	-7	0, 90	1, 47	12, 91	1, 14

Summary

- Lime-Cement Modified Soil for HSR
- Fiber Reinforced Soil has lower thermal conductivity, higher strength, longer durability
- Dynamic Shearing Box developed

Thanks to National 973 project and NSCF!Thanks to my team members!