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Central South University (CSU)

 Top ranked (Tier 1) comprehensive research university in China

* Top ranked engineering programs & medical school in the nation
— Mining & Metallurgy
— Civil Engineering
— Railroad-related Programs

— 3 large Grade-A affiliated hospitals

e Strong international joint education & research collaboration
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School of Civil Engineering at CSU

* Top ranked programs in the nation
— Geotechnical Engineering
— Bridge Engineering
— Tunnel Engineering
— Railroad Engineering
— Building Engineering
— Construction Management
— Engineering Mechanics
— Fire Engineering
— Construction Materials



School of Civil Engineering at CSU

e Research Centers
— National Engineering Laboratory for High Speed Railway Construction

— Ministry of Education Key Laboratory for Heavy Haul Railway Engineering
Structures

— International Cooperative Research Laboratory for Rail Transit Safety
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Education

Research Interests

Ph.D. in C.E., University of lllinois at Urbana-Champaign (UIUC), 2014
M.Sc. in Theoretical & Applied Mechanics, UIUC, 2013
M.S.C.E., Southeast University, Nanjing, China, 2008

B.S.C.E., Tongji University, Shanghai, China, 2005
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Transportation Geotechnics & Geomaterials in general ‘ - .

Testing & Modeling of Subgrade Soils, Base/Subbase Aggregates, & Railroad
Ballast

Transportation Geodynamics
Subgrade Stability & Improvement (stabilization, geosynthetics) o
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Investigating Strength and Deformation Characteristics
of Heavy-haul Railway Embankment Materials Using
Large-scale Undrained Cyclic Triaxial Tests
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— Specimen Preparation . '
— Testing Schemes

e Results & Discussion

— Dynamic Strength
— Elastic Deformation
— Permanent Deformation

e Summary & Conclusions
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Introduction

* Heavy-haul rail with increased axle load & speed is the new
development priority in China

* About 70% of the heavy-haul railway lines are constructed over
embankments of coarse-grained soil (CGS) filling materials, thus
making the mechanical behavior of CGS critically important

— Shear Strength
— Elastic & Inelastic (permanent) Deformation

* Limited laboratory strength & deformation tests have been
conducted on such CGS materials
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A Selection of Previous Studies

* The accumulation of excessive permanent deformation may cause a series of
subgrade problems, such as settlement and instability, whereas excessive
dynamic elastic (recoverable) deformation also reduces the train operating
speed (Du et al. 2010; Liu et al. 2008; Zhou et al. 2000)

 The actual train loading applied relative to the coarse-grained embankment soils
(CGS)’ critical cyclic stress (CCS) level has a considerable influence on the plastic
deformation accumulation characteristics (Boushehrian et al. 2011; Du et al.
2010; Liu et al. 2008; Stewart et al. 1986; Xiao and Tutumluer 2016)

 The influence of consolidation on CCS was studied and larger consolidation
deviatoric stress was found to be attributable for greater CCS (Tang et al. 2003)

* The wet-dry cycles were also found to reduce the CCS of soils (Sun et al. 2004) ,
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A Selection of Previous Studies

 Hirakawa et al. (2002) and Momoya et al. (2005) investigated through a model
test the effect of moving wheel loads on cyclic plastic deformation of roadbed
and railroad ballast

* The synergistic effects of principal stress axis rotation (PSR) & change in water

content on the cyclic plastic deformation characteristics of granular base course
materials were found important (Ishikawa & Miura 2015)

 Grabe and Clayton (2003, 2009, 2014) concluded that PSR caused by moving

wheel loads cause reduced resilient moduli and increased rate of permanent
strain for certain types of road and track foundation materials

* The effect of the number of repeated-load applications on the dynamic shear
modulus was investigated by Indraratna et al. (2005) and Flora and Lirer (2013) .,
|
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Research Objective & Scope

* To present and analyze the permanent deformation and dynamic

strength results that were obtained from large-scale laboratory repeated

load triaxial tests on over thirty CGS specimens

e To quantify the effects of moisture content, degree of compaction, and

deviatoric and confining stress levels on the CCS of the tested CGS

* To utilize a customized large-scale laboratory repeated load triaxial

apparatus recently developed at the Central South University
14
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Tested Materials

Table 1. Physical Properties of Tested CGS Embankment Material

Parameter Value
Maximum dry density, pmax (g:cm ™) 2.21
Water content of saturated specimen, @, (%) 93
Void ratio 0.248
Coefficient of uniformity C, 80
Coefficient of curvature C, 1.25
Effective shear-strength parameters

@' (%) 41

¢’ (kPa) 69

Percent finer by weight(%)
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Large-scale Triaxial Apparatus

» Customized for teSting CGS: Exhaustvaive_‘?{r
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Large-scale Triaxial Apparatus
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Dynamlc Stress Scheme Applied

Axial Stress o
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Dynamic Stress States

Field
Instrumentation

FE Modeling

Table 3. Testing Program

Name Water content [ (5%)] o, (kPa) Ageye (kPa)
150508 9.3 15 50
151008 9.3 15 100
151258 3 15 125
151508 9.3 15 150
152008 9.3 15 200
152508 9.3 15 250
300508 9.3 30 50
301008 9.3 30 100
301258 9.3 30 125
301508 9.3 30 150
302008 9.3 30 200
302508 9.3 30 250
600508 9.3 60 50
601008 9.3 60 100
601255 9.3 60 125
601508 9.3 60 150
602008 9.3 60 200
602508 9.3 60 250
151000 6 15 100
151500 6 15 150
152000 6 15 200
152500 6 15 250
302500 6 30 250
30275U 6 30 275
30300U 6 30 300
602500 6 60 250
603000 6 60 300
603500 6 60 350
604000 6 60 400
602500 7.5 60 250
603500 7.5 60 350
453500 7.5 45 350
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Results & Discussion
e Static Shear Strength
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Table 2. Static Shear-Strength Properties (Total Stress) of Tested CGS
Specimens at Different Conditions

Apparent cohesion Angle of internal friction
Test conditions (¢’ (kPa)] [¢" (degrees)]
K=097, @ =93% 58 33
K=097, w=75% 61 35
K=097, w=6.0% 62 36
K=095 w=93% 45 31
K=095 w=060% 50 32

Note: K = degree of compaction (1.e., achieved dry density divided by
maximum dry density); @ = gravitational moisture content. 21
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" Results & Discussion

Permanent Axial Deformation Accumulation
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Fig. 3. Permanent axial strain accumulating with number of load
applications under varying cyclic-stress combinations for saturated
specimens with o3 _ of 15kPa
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Accumulative Strain ¢ (%)
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" Results & Discussion

Permanent Axial Deformation Accumulation
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Fig. 4. Permanent axial strain accumulating with the number of load
applications under varying confining stress levels (o ;=125 kPa)
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* Permanent Axial Deformation Accumulation
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Fig. 5. Permanent axial strain accumulating with the number of load
applications for different moisture contents
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Results & Discussion Otk

e Permanent Axial Deformation Accumulation |

Table 4. Method for Classifying the Specimen Patterns

Name of
pattern Description

Attenuation &, increases slowly, does not exceed 4% after 50,000 cycles

Criticality £, increases, sometimes quickly, sometimes slowly, and can
reach 13% after 20,000 cycles

Failure £, Increases quickly and canreach 15% before 20,000 cycles

25



Results & Discussion

* Permanent Axial Deformation Accumulation
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Results & Discussion B & K A
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* Permanent Axial Deformation Accumulation
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Results & D
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* Permanent Axial Deformation Accumulation =
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* Permanent Axial Deformation Accumulation T
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Summary & Conclusions

* The CGS’s permanent axial strain induced by cyclic stress accumulates
with the number of load applications; the confining stress could hinder
the accumulation, whereas moisture content could accelerate the
accumulation

* The concept of the critical cyclic stress (CCS) was proposed and further
defined as the threshold cyclic stress that causes the occurrence of
criticality. It was then successfully employed as one of the key criteria to
ensure the dynamic stability of CGS embankment layers by controlling

the stress level imposed by train loading below the limit of the CCS
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* The critical dynamic stress increases with larger confining stress and
lower moisture content. One of the key measures for maintaining the
CGS embankment stability is to control the in-situ dynamic stress levels
imposed by train loading to be within the limiting range of the critical
stress level

* The higher cyclic deviator stress and confining stress were found to
contribute to better specimen compaction and particle interlocking and
thus increased initial elastic stiffness of the CGS embankment material,
especially within a small number of load applications

* The elastic stiffness degradation is associated with permanent
deformation failure of the specimen "
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