Geotechnical issues around ballasted track and slab track in Japan

Railway Technical Research Institute Yoshitsugu Momoya

Contents

- Introduction
- Ballasted tracks in existing line
- Asphalt roadbed in design standard
- Slab track on earth structure

Ballasted track and slab track

Ballasted track

Slab track

- Periodical maintenance work is necessary.
- Easy to correct track irregularity.
- Construction cost is relatively low.

- Low maintenance work.
- Difficult to correct track irregularity.
- Construction cost is relatively high.

Requirement for ballasted track

Supporting sleepers stably and uniformly.
Distribute train load applied on roadbed.

Requirement for ballasted track

Easy to correct track irregularity by tamping.
Good drainage.

Requirement for ballasted track

- Lateral resistance against lateral train load and rail buckling.
- Apply adequate elasticity on track (especially on bridge or viaduct)

Railway Technical Research Institute

Requirement for slab track

- Maintenance free.
- Not high construction cost.

Difficult circumstance for railway track in Japan

Alluvial clays are deposited at plains. Geological ages are young. (younger than 6000 years)

Difficult circumstance for railway track in Japan

Heavy rain.

Contents

Introduction

- Ballasted tracks in existing line
- Asphalt roadbed in design standard
- Slab track on earth structure

Existing line and newly constructed line

Existing line

- Constructed before 1960's
 Design standard was not regulated.
- Newly constructed line
 Constructed after 1970's
 Design standard was established in 1978

Most of railway lines in Japan were constructed before 1950's

Roadbed and subgrade in existing line

- No specific roadbed layer
- Material is not regulated
- Insufficient drainage
- Low stiffness subgrade

- Penetration of ballast into roadbed
- Mud pumping
- Large dynamic deformation
- Increase of maintenance work

Penetration of ballast into roadbed

Depth of ballast penetration layer

Vertical stress in roadbed and subgrade

Stiffness of roadbed and track irregularity

Settlement of ballasted tracks and track irregularity strongly depends on the stiffness of roadbed and subgrade.

Roadbed improvement

 Most of the roadbeds constructed before 1960's do not have sufficient stiffness.

Settlement of ballasted track becomes less after roadbed improvement.

Conventional roadbed improvement

Conventional roadbed improvement method: Crushed stone, steel slag, cement treated material.

Sufficient compaction work was necessary.

New roadbed improvement method

 Reusing degraded ballast mixed with cement grout.

Cyclic loading test results

Cyclic loading test results

Before roadbed improvement

Degraded ballast

Excavation of ballasted track

Preparation of grout

Laying degraded ballast

Injection of grout

After roadbed improvement

 Track irregularity after the roadbed improvement

Issues around transition zone

Moving loading test

Multi-actuator moving loading test apparatus

Multi-actuator moving loading test apparatus

Multi-actuator moving loading test apparatus

Moving loading test results

Moving loading test results

Moving loading test results

Contents

- Introduction
- Ballasted tracks in existing line
 - Asphalt roadbed in design standard
- Slab track on earth structure

Asphalt roadbed for newly constructed lines

 Asphalt roadbed became standard structure in Japan after 1978

- Sufficient bearing capacity.
- No ballast penetration.
- Good drainage.

Railway Technical Research Institute

37

- -Tensile strain at the bottom of asphalt concrete ϵ_t
 - \rightarrow Allowable number of cyclic loading for Fatigue failure

 $N_A = 0.6 \times 18.4 \times C \times 6.167 \times 10^{-5} \epsilon_t^{-3.291} E_A^{-0.854}$

Vertical displacement at the surface of asphalt roadbed

 \rightarrow Less than 2.5mm considering impact load

 $K_{30} = 110 \text{ MN/m}^3$

Railway Technical Research Institute

40 cm (Fatigue life)

Contents

- Introduction
- Ballasted tracks in existing line
- Asphalt roadbed in design standard
- Slab track on earth structure

Slab track

History of slab track

Tokaido Shinkansen (1964): Ballasted track on embankment

Bearing capacity of embankment was not very high. (using clay, compaction control etc)

Settlement of ballasted track became very large after the start of train operation.

Sanyo Shinkansen Okayama-Hakata (1975): Slab track on viaduct.

Hokuriku Shinkansen Takasaki-Nagano (1997):

Slab track on high quality embankment

Cost of slab track

Annual tonnage 1.2 million ton / year

Life cycle cost of slab track is lower than that of ballasted track.

Percentage of slab track in Shinkansen

Slab track on earth structure

Required specification for subgrade

Stiffness: $K_{30} \ge 110$ MN/m³

Density: Higher than 95% of maximum dry density

Material for embankment: Gravel, Sandy gravel, Gravelly sand, sand

Subgrade improvement for slab track

- Subgrade of natural ground should be improved to satisfy K_{30} value.

Multi-layered elastic analysis

Numerical analysis for the design

Cross section of slab track on earth structure

Subgrade with N value less than 4

• If N value of subgarad by SPT test is less than 4, ground improvement is required.

Integrated RC roadbed

Investigation was carried out to apply integrated RC roadbed on soft diluvial clay subgrade.

Diluvial clay: Ageing effect, pre-loaded(cutting)

Ground investigation method

Standard penetration test

Electric cone penetration test

Ground investigation result

Triaxial test

In-situ cyclic loading test

Vibration machine

Loading test results

120kN, 20Hz, 2x10⁶ times loading

Acceleration

Displacement 0.15 Concrete roadbed surface Displacement (mm) (Just beneath loading point) 0.10 ᡣᡣ᠇᠊ᠣᠦᠣᠥᡣᠣᡣᠣᠣᠣᠣᠣ 00000 2,700 mm distant from loading point 0.05 ~~~~~~~~~~~~ 0.00 500 1000 1500 2000 0 Number of cycles (*1000)

FEM to simulate the loading test

Deformation of RC roadbed

Standard RC roadbed

Integrated RC roadbed

Integrated RC roadbed distributes train load widely.

Vertical stress on subgrade

Standard RC roadbed

Integrated RC roadbed

Integrated RC roadbed reduces stress applied on subgrade.

Comparison between Standard RC roadbed and integrated RC roadbed

	Integrated RC roadbed	Standard RC roadbed	Integrated / Standard
Vertical displacement	0.60 mm	0.71 mm	0.85
Reinforcing steel stress	2.08 MN/m ²	2.33 MN/m ²	0.89
Subgrade surface stress	10.5kN/m²	28.6 kN/m ²	0.37
Clay subgrade surface stress	6.89 kN/m ²	9.02 kN/m ²	0.76

Summary

- Bearing capacity of roadbed and subgrade is important factor to reduce the maintenance work of ballasted track.
- To reduce the settlement of ballasted track at transition zone is an important issue.
- Asphalt roadbed is widely applied to ballasted track.
- Slab track is widely constructed on the earth structure in these 20 years.
- Integrated RC roadbed is a new method to apply slab track on relatively soft subgrade, such as aged diluvial clay.

