大学院工学研究院附属エネルギー・マテリアル融合領域研究センター 複合量子ビーム超高圧顕微解析研究室

Multi-Quantum Beam High Voltage Electron Microscope Laboratory

複合量子ビーム超高圧顕微解析研究室

The Laboratory of Multi-Quantum Beam High-Voltage Electron Microscope

全学共同研究・教育施設として、北海道大学複合量子ビーム超高圧顕微解析研究室には2台の超高圧電子顕 微鏡ならびに各種の顕微鏡を常設し、材料の表面と内部構造のナノ解析による研究サポートが行えるように体制 を整えております。

1998年に導入した、世界でも比類のないイオン加速器2基を敷設したマルチビーム超高圧電子顕微鏡 (ARM-1300)に加え、2007年にはパルスレーザー発振器を追設したレーザー超高圧電子顕微鏡 (Laser-HVEM)の開発、また、2014年にはマルチビーム超高圧電子顕微鏡にレーザー照射機能を付加し、複合 量子ビーム超高圧電子顕微鏡を開発し、イオン、電子、光の各種量子ビームの複合化の観点から極めてユニーク な先端研究展開に期待がもたれています。

これらの装置を利用して、現在は、「マテリアル先端リサーチインフラ(ARIM Japan)」事業、並びに、「大学間連携 共同利用設備群 超高圧電子顕微鏡連携ステーション第II期」事業による共同利用装置として、グリーン・ナノ・ラ イフ科学に関わる年間100件以上の環境、エネルギー、生命科学の研究者の方々への研究サポートを行っており ます。

本施設がその使命を果たし、共有設備として今後さらに発展するには、各方面からのご協力が必要です。世界に 誇るこれらの設備と研究支援体制を十分にご活用頂きますとともに、今後とも御指導、御鞭撻のほどお願い申し上 げます。

As a collaborative research and educational facility, we have developped a couple of highvoltage electron microscopes (hereinafter referred to as "HVEM") and various microscopes at Multi-Quantum Beam HVEM Laboratory of Hokkaido University. Since then, we have been supporting nano-analytical studies on surface and microstructure of materials.

In 1998 we introduced a multi-beam HVEM equipped with a double high-energy ion accelerator (ARM-1300) unlike any other that had ever existed in the world, then developed an advanced laser HVEM integrated with a pulsed-laser oscillator (Laser-HVEM) in 2007, and finally appended a laser irradiation device on a multi-beam HVEM to develop a multi-quantum beam HVEM in 2014. Therefore, we expect that our facilities will contribute to extremely unique and advanced research from the viewpoint of quantum beams of ion, electron and various optical quantum beams.

For the two research support projects, "The Advanced Research Infrastructure for Materials and Nanotechnology in Japan (ARIM Japan)" and "The Phase II of Inter-University Joint Research Centers of HVEM", we provide support services with the above mentioned equipment to hundreds of researchers in environment, energy and life-science relating to green-nano-life science every year.

In order to achieve our mission and further development, we still need broad public support. We hope that you take advantage of our world-leading facilities and research supporting systems, and greatly appreciate your further guidance and encouragement in the future.

全学共同利用施設

A Common Facility for All Departments of the University

マルチビーム超高圧電子顕微鏡は、300kV、400kVイオン加速器2台と1300kVの超高分解能電子顕微鏡 (点分解能 0.117nm)を連結したシステムです。これにより、異種原子をイオン化し加速させ、単独原子あるいは複 合原子を同時に材料に注入し、またその様子を原子レベルの分解能でその場観察することが世界で初めて可能と なりました。

The multi-beam HVEM is a system consisting of two ion accelerators (300kV and 400kV) and a 1300kV high resolution electron microscope with a point resolution of 0.117nm. Thus, we are now able to ionize and accelerate different ion species, to implant single or complex atoms simultaneously into materials and even to observe in situ their resolution at atomic level for the first time in the world.

マテリアル先端リサーチインフラ事業(ARIM Japan事業) ARIM Japan Project

北海道大学複合量子ビーム超高圧顕微解析研究室は文部科学省マテリアル先端リサーチインフラ事業 (ARIM Japan事業)に参画し、共同利用体制のより一層の充実、強化を図るとともに、相互のネットワーク化を促進 し、超高圧電子顕微鏡等を用いたナノテクノロジー研究支援を実施していきます。

Multi-Quantum Beam HVEM Laboraratory of Hokkaido University participates in "The Advanced Research Infrastructure for Materials and Nanotechnology in Japan of the Ministry of Education, Culture, Sports, Science and Technology(MEXT)", and we will improve the joint-use system of the facilities, promote mutual network systems and support nanotechnology research involving high-voltage electron microscopy.

研究設備

マルチビーム超高圧電子顕微鏡 JEM-ARM1300

Multi-beam Ultra-High Voltage Electron Microscope

▶スペック Specification

加速電圧 Accelerating voltage: 1250kV (max 1300kV) 粒子分解能 Point-to-point resolution: 0.118nm イオンビームの電子線に対する入射角度 Beam angle: 46° ▶付属機器 Attachment 二軸傾斜ホルダー Double tilt holder 加熱ホルダー Double tilt heating holder 液体窒素冷却ホルダー Double tilt liquid nitrogen cooling holder 300kV イオン加速器 Ion accelerator (H+, He+, Ar+, Ne+) 400kV イオン加速器 Ion accelerator (Ti+, Ni+, Fe+, Ag+) レーザー(HeCd / YAG / フェムト秒) Laser equipment (Continuous Wave He-Cd laser/Nanosecond pulsed YAG laser/Femtosecond pulsed laser)

▶▶主な用途 Primary use

超高分解能構造像・格子像の観察 Observation of ultra-high resolution structure image and lattice image 厚膜試料の観察 Observation of thick film sample 試料加熱・冷却過程その場観察 In-situ observation of microstructural change during heating/ cooling processes イオン・レーザー・電子線照射その場観察

In-situ observation of ion implantation/radiation damage behaviors

Research Facilities

レーザー照射装置 Additional laser irradiation equipment

フェムト秒レーザー/ナノ秒パルスレーザー/He-Cd レーザー Femtosecond pulsed laser/Nanosecond pulsed laser/ CW He-Cd laser

レーザー照射装置 The newly installed laser irradiation equipment

イオン/レーザービーム偏向ポート Ion beam/laser beam deflecting port

High resolution TEM image of Si single crystal

High resolution TEM image of Au single crystal

研究設備

UEATELL LEATELL LEATE

【通称:NEOARM】

▶スペック Specification

加速電圧 Accelerating voltage: 80kV, 200kV TEM分解能 Resolution: 70pm(加速電圧200kV) STEM分解能 Resolution: 100pm(加速電圧200kV) 冷陰極電界放出形電子銃(Field Emission Gun)

▶付属機器 Attachment

球面収差補正装置ASCOR (Advanced STEM corrector) (Single spherical aberration corrector) エネルギー分散形X線分析装置EDS (SDD) 2本 Gatan社 CMOSカメラ One View () 2軸傾斜ホルダー (Double tilt holder) DENS社 Lightning バイアス印加・加熱TEM試料ホルダー (Biasing & Heating holder)

▶主な用途 Primary use

高分解能像の観察 (Observation of high-resolution lattice images) CBED、ナノビーム回折 (CBED and NBD analysis) EDSによる組成分析・マッピング (1D/2D EDS mapping) 試料加熱、バイアス印加過程のその場観察 (Heating the sample and observation of bias applying process)

オペレーションスペース Operation space

Research Facilities

业 収差補正走査透過型電子顕微鏡 Titan G2 60-300

Cs-corrected Scanning Transmission Electron Microscope

オペレーションスペース Operation space

►スペック Specification

加速電圧 Accelerating voltage: 60kV, 80kV, 200kV, 300kV TEM分解能 Resolution: 70pm(加速電圧300kV) STEM分解能 Resolution: 70pm(加速電圧300kV) XFEG電子銃(高輝度FE電子源) Field Emission Gun

▶付属機器 Attachment

二軸傾斜ホルダー Double tilt holder トモグラフィー用ホルダー Tomography holder ウィーンフィルター型モノクロメーター Monochromator 分割型検出器 Split type detector 照射系・結像系球面収差補正器 Double spherical aberration corrector Super-X EDS system (4 separated SDDs) GIF QuantumER

▶主な用途 Primary use

高分解能像の観察 Observation of high-resolution lattice images CBED、ナノビーム回折 CBED and NBD analysis EDSによる組成分析・マッピング 1D/2D EDS mapping EELSによる電子状態測定 Measurement of electronic state by EELS エネルギーフィルタによる元素マッピング

Elemental mapping by energy filter (GIF) 電子線トモグラフィーによる三次元画像構築

3D image reconstruction using electron tomography

電場・磁場の微分位相コントラストSTEM観察(DPC-STEM) DPC observation in Scanning Transmission Electron Microscopy

積算微分位相コントラストSTEM観察(iDPC-STEM)による 低電子線量高コントラスト観察

Optimum Bright Field observation using iDPC in Scanning Transmission Electron Microscopy

研究設備

**** 汎用200kV 走查透過型電子顕微鏡 JEM-2100

200kV Scanning Transmission Electron Microscope

▶スペック Specification

加速電圧 Accelerating voltage:80, 200kV 電子銃 Illumination system:LaB₆ 粒子分解能 Point-to-point resolution limit:0.23 nm 格子分解能 Lattice resolution limit:0.14 nm

▶付属機器 Attachment

二軸傾斜型分析ホルダー Double tilt analytical holder 走査像観察装装置(STEM-BF/STEM-DF) Detector of scanning TEM image エネルギー分散型X線分光器 Energy-dispersive X-ray spectrometer (EDS)

▶主な用途 Primary use

明視野像·暗視野像観察(TEM/STEM) Observation of bright-field and dark-field on TEM and STEM

高分解能格子像の観察 Observation of high-resolution lattice image EDSによる微小領域組成 分析・マッピング 1D/2D EDS mapping

汎用 200kV 透過型電子顕微鏡 200kV Transmission Electron Microscope

▶スペック Specification

加速電圧 Accelerating voltage: 200kV 粒子分解能 Point-to-point resolution limit: 0.28nm 格子分解能 Lattice resolution limit: 0.20nm

▶付属機器 Attachment

エネルギー分散型X線分光器 Energy-dispersive X-ray spectrometer (EDS) CCDカメラ Camera

JEM-2000FX

▶主な用途 Primary use

明視野・暗視野像観察 Observation of bright-field and dark-field images EDSによる微小領域組成分析 Compositional analysis by EDS

FIB 加工装置 JEM-9320FIB Focused Ion Beam System

▶スペック Specification

Ga液体金属イオン源 Ga liquid-metal ion source 加速電圧 Ion Accelerating voltage : 5~30kV 倍率 Magnification : x50 (Low mg mode), x150~x300,000 像分解能 SIM resolution limit : 6nm (@30kV) 最大ビーム電流 Beam max. current : 30nA (@30kV) TEM試料サイドエントリーゴニオメータステージ Tip-on (TEM compatible) side entry holder バルク試料オータステージ Bulk sample holder

▶主な用途 Primary use

透過型電子顕微鏡観察用薄膜試料制作 Preparation of thin film sample for transmission electron microscopy

SIM像観察 Observation of SIM image

Research Facilities

電界放射型 200kV 透過型電子顕微鏡 JEM-2010F

200kV Field-Emission Transmission Electron Microscope

▶スペック Specification

加速電圧 Accelerating voltage: 200kV 電子銃 Illumination system: ZrO/W FEG 粒子分解能 Point-to-point resolution limit: 0.19nm 格子分解能 Lattice resolution limit: 0.10nm

▶付属機器 Attachment

二軸傾斜分析ホルダー Double tilt analytical holder エネルギー分散型X線分光器 Energy-dispersive X-ray spectrometer (EDS) 電子エネルギー損失分光器 Electron energy-loss spectrometer (EELS) 高角度環状暗視野検出器 High-angle annular dark-field (HAADF) detector for STEM

▶主な用途 Primary use

高分解能像の観察 Observation of high-resolution lattice image CBED、ナノビーム回折 CBED and NBD analysis EDSによる極微小領域組成分析・マッピング 1D/2D EDS mapping EELSによる極微小領域電子状態測定 Measurement of electronic state by EELS エネルギーフィルタによる元素マッピング Elemental mapping by energy filter (GIF) HAADFを用いたZコントラスト像の取得 Z-contrast imageing by STEM-HAADF

■■■ 電界放射走査型電子顕微鏡 JSM-7001FA

Scanning Electron Microscope

▶スペック Specification

加速電圧 Accelerating voltage: 30kV

▶主な用途 Primary use

二次電子・反射電子による表面観察 Surface observation by secondary electrons and backscattered electrons

EDSによる微小領域組成分析 1D/2D EDS analysis

EBSDによる結晶方位解析 Crystallographic orientation analysis by EBSD system

研 究・観 察 例

イオン注入を利用した高強度材料製作手法の確立Fabrication of High Strength Materials Using Ion Irradiation

非平衡析出相の高分解能TEM像とフィルター像 HR-TEM and filtered image of non-equilibrium precipitate/matrix interface

電子線照射による非平衡析出相のアモルファス化 Effect of electron irradiation on amorphization of non-equilibrium precipitated phase

Research Progress

Arイオン注入

Ar ion irradiation

Feイオン注入 Fe ion irradiation

変態相の断面 TEM 像 Cross-sectional TEM image of phase transformation

マルチビーム超高圧電子顕微鏡に付属したイオ ン加速器を活用することで、既存の手法では得られ ないような相組織・原子構造をもった材料を創製す ることが可能となります。例えば、アルミ合金に種々 の金属元素をイオン注入することで、非平衡な析出 相を微細分散させることによりイオン注入層のみを 高強度化することができます。

また、構造材料用ステンレス鋼についても、イオン 注入を利用することで表層のみに硬いマルテンサイ ト相を形成させることが出来るため、新しい表面改 質技術として今後の応用が期待されます。

Now it is possible to manufacture materials with different structures of phases and atoms by using the ion accelerator equipped on the multi-beam HVEM, while it is not obtainable by existing techniques. For example, implanting various metallic elements to aluminum alloys by ion implantation disperses nonequilibrium phase deposition finely, and thus it can fortify only the ion implanted layer.

Also, it enables to form a hard martensitic phase on the stainless steel for the construction industry. Therefore, we expect that this new surface modification technology will create further applications in the future.

H. Kinoshita et al., Mater. Chem. Phys., 81 (2003) Dwi Gushiono et al., Mater. Trans., 45 (2004)

高分解能TEM/STEM観察とEELSを用いた材料開発

HRTEM/STEM Observation and EELS for Material Development

Pd/ZnO界面の高分解能TEM像と原子構造モデル HRTEM and atomic model of Pd/ZnO interface

Zn終端界面における原子構造の解析例 Atomic structure of Zn-terminated interface

Interfacial chemical bonding state analysis based on ab-initio calculation and EELS

Research Progress

Caをドープした α -SiAIONの高分解能HAADF像と構造モデル HR-HAADF and atomic model of Ca-doped α -SiAION

 α -SiAlON中での電子線伝播挙動のシミュレーション結果 Multi-slice simulation electron propagation behavior in α -SiAlON

近年のデバイスの微小化に伴い、先進材料の研究開発に向けてはサブナノスケールでの材料の構造評価と 状態分析が必須となりつつあります。マルチビーム超高圧電子顕微鏡ならびに各種分析電子顕微鏡の組み合 わせにより、先進デバイス材料の解析を実施しております。

例えば、金属/セラミックス界面の原子構造をマルチビーム超高圧電子顕微鏡で直視するとともに、界面に おける特異な電子状態を電子エネルギー損失分光法 (EELS) と第一原理電子状態の組み合わせにより解明 しました。また、最新の球面収差補正STEMを用いて先進セラミックス材料の原子構造を明らかにするととも に、材料中での電子線伝播挙動をシミュレーション計算により評価し、ドーパント分布の定量化に向けた研究 を行っております。

Due to the miniaturization of devices in recent years, it is essential to carry out research and development of advanced materials for their atomic structural evaluation and chemical bonding state analysis at sub-nanometer scale. For this purpose, we carry out analysis of advanced device materials by combining a multi-beam HVEM and various analytical electron microscopes.

For example we have observed directly atomic structures of metal/ceramic interface under multi-beam HVEM and also found out specific electronic states at the interface by a combination of electron energy-loss spectroscopy (EELS) and firstprinciple electronic structure calculations. In addition, we have clarified the dopant distribution of advanced ceramic materials by using the spherical aberration corrected STEM and the multi-slice simulation technique.

N. Sakaguchi et al., Phil. Mag. (2008), N.Sakaguchi et al, Microscopy (2016)

研 究・観 察 例

ここ。マルチ量子ビーム環境を模擬したシミュレーション照射実験

Simulation Irradiation Experiment in Multi-Quantum Beam Environment

173s 231s 293s 353s 100nm

レーザー・電子線照射のボイド形成写真 (a) 電子線のみ (b) レーザー 照射のみ (c,d) レーザー照射の後に続いて電子線照射 (e) レー ザー・電子線同時照射:時間及び温度は下図に記入 (RT は室温)

Void formation under laser-electron irradiation (a) electron irradiation (b) laser irradiation (c,d) laser irradiation followed by electron irradation (e) simultaneous laser and electron dual-beam irradiation ステンレス鋼中の空孔集合体のレーザー照射による成長 Growth of holes aggregation by laser irradiation in stainless steel

レーザー光と電子線 Laser and Electron Beam

1998年、イオン加速器2台を連結したマルチビーム超高圧電子顕微鏡を開発、2007年には短パルスレー ザーを敷設したレーザー超高圧電子顕微鏡(L-HVEM)を開発、さらに2009年にはイオン加速器(試料照射 真空チャンバー部)に短パルスレーザー装置を備えたイオン・レーザー照射単独装置の開発を実施しました。 現在は未踏であるレーザー・電子線・イオンの3種量子ビームのマルチビーム超高圧電子顕微鏡の実現に向 け準備を進めています。これによりフォトン(レーザー光)、レプトン(電子)、ハドロン(イオン)というすべての素 粒子系の代表が揃います。これにより、これまで行えなかったガンマ線(電磁波)、ベータ線、中性子・イオンの 量子ビームが共存・競合する核融合炉環境の高温プラズマに曝される材料損傷模擬なども可能であります。 電子顕微鏡機能としてのナノ領域観察によるその場実験が同時に行えるため、高時間・高空間分解能解析に よるグリーンナノテク・エネルギーの研究推進が期待されます。

We developed a multi-beam HVEM connected with two ion accelerators in 1998. Subsequently, we developed another HVEM with an integrated short-pulsed laser in 2007, then developed a single ion laser radiation device equipped with an ion accelerator whose vacuum chamber was provided with a short-pulse laser unit in 2009. Currently we have accomplished to install a multi-beam HVEM applied to the three quantum beams (laser, electron and ion). When we operate it, all the representative elementary particles, namely photon (laser beam), lepton (electron) and hadron (ion) will become a complete set. Thus, we will be able to implement simulation experiments that has been unfeasible, such as dealing with damage materials exposed to high temperature plasma in a nuclear fusion reactor where gamma rays (electromagnetic radiation), beta rays and neutron/ion beams are coexisting and competing. Since it makes us possible to conduct a nano-region observation and an in situ observation simultaneously under electron microscope, we can expect further research promotion on high time and high spatial resolution analysis for green-nanotech-energies.

Research Progress

イオン・レーザーマルチ照射装置 Ion and Laser Multi-Irradiation System

SEM images of before and after irradiation. (a) non-irradiated. (b) After ionirradiation. (c) After laser irradiation.

(d) After ion and laser co-irradiat ion.

Specimen

イオン照射と短パルスレーザー照射を組み合わせることにより、ガラス基板表面にレーザーの波長や電場 ベクトルに依存した貴金属ナノ粒子を周期的に配列させたナノ構造を作成できることが明らかになってきまし た。そこで、超高圧電子顕微鏡室ではイオン加速器と短パルスレーザーを組み合わせて超高圧電子顕微鏡 に連結し、ナノ構造形成の機構解明とその応用について研究開発を進めています。

It has become clear that simultaneous irradiation with ion and short-pulse laser can be applied to create nanoparticles of noble metals. Therefore, our HVEM laboratory proceeds to investigate the mechanism of new nanostructure formations by a combination of the ion accelerator and the short-pulse laser.

イオンと光 Ion and Laser Beam

複合材料やオプトデバイスの研究開発 Research and Development for Composite Materials and Opto-Devices

近年、結晶のナノサイズ化やナノスケールで微細組織を制御することにより、これまでにない機能や強度を発 現することが明らかになりつつあります。しかしながら、その強度の発現機構は未だ不明なところが多く、試験後 の微細組織観察では試料作成時のartifactの問題があります。そのため、超高圧電子顕微鏡内でその場破壊 挙動の観察とそのサブマイクロの荷重/変異曲線を取得できるその場観察ホルダーを開発し、複合材料やオプ トデバイスの研究開発を推進しています。

In recent years, it has become possible to obtain new functions and strength of materials by nano-sizing of their crystals and controlling their microstructure at nano-scale level. However, the mechanism of the strength is still mostly unknown, and after the specimen test, we still have artifact problems on the specimen resulted during its preparation. Due to this, we promote research and development of composite and opto devices; e.g. we have developed a holder that enables us to observe in situ breakdown behaviors and to acquire sub-micro loads and/or dislocation curves.

T. Shibayama et al., IOP Conf. Ser.: Mater. Sci.

新しく開発したその場観察ホルダー(左) FIBによるミニチュアDNS型ナノメカニクス評価試験片(右)

Custom built nano-mechanics piezo driven holder for in-situ indentation testing (Left) FIB processed miniature sized DNS type testing pieces for shear strength evaluation of fiber reinforced composites (Right)

新しく開発したその場観察グラフィックユーザーインターフェース その場試験開始後TEM像(左) その場TEM観察像と同期した荷重/変位曲線(右) Graphical user interface for in-situ observation TEM image of after in-situ test (Left) TEM image of in-situ observation and synchronized load/displacement curve (Right)

超高圧電子顕微鏡のバイオマテリアルへの応用 Application of Multi-Beam HVEM for Biomaterial Science

マルチビーム超高圧電子顕微鏡の超高電圧により加速された電子の波長は非常に短いため、高い分解能が 得られると同時に、電子線は物質を透過しやすくなります。特に、生体材料等の電子線照射に弱い物質を高分解 能で観察する場合、通常の電子顕微鏡(加速電圧200kV)を用いると電子ビームによる熱ダメージにより試料は 大きく損傷されてしまいます。マルチビーム超高圧電子顕微鏡を用いることで熱ダメージを抑えつつ原子レベル での物質の構造を観察することが可能となり、バイオマテリアルの微細構造解析に威力を発揮しています。

The wavelength of electrons is very short due to the acceleration of the multi-beam HVEM. Consequently it gives high resolution images and makes electron beams transmit easily through the sample. In particular, when we observe materials that are weak against irradiation of electron beams, such as biological materials at high resolution under a conventional electron microscope (accelerating voltage 200kV), the sample is damaged by electron beam heatings. On the contrary, we can observe such materials at atomic level using the multi-beam HVEM without heating.

N. Sakaguchi et al., J. Elec. Microsc.. (2008)

人歯エナメル質の微細組織と各方向から見た高分解能TEM像 Microstructure and HR-TEM image of human tooth enamel

生体組織に包埋されたカーボンナノチューブの明視野像と高分解能TEM像 Bright-field and high-resolution TEM images of carbon nanotubes embedded in subcataneous tissue

利用案内

🚼 マテリアル先端リサーチインフラ(ARIM Japan)事業/Usage guide for the use of the laboratory (ARIM Japan Project)

マテリアル先端リサーチインフラ(ARIM Japan)事業を利用し、当施設の設備をご利用希望される方は、以下の手順でお申 し込みください。

Any personnel intending to use the equipment in our facilities for ARIM Japan Project must follow the following procedures:

 マテリアル先端リサーチインフラ (ARIM Japan) 利用申請書をナノテク連携推進室にご提出ください。 詳細は下記マテリアル先端リサーチインフラ (ARIM Japan) ウェブサイトをご参照ください

URL : https://arim.cris.hokudai.ac.jp/

 $Please \ submit \ a \ complete \ application \ for \ the \ facility \ usage \ to \ The \ Office \ of \ the \ Nanotechnology \ Collaborative \ Research.$ $Please \ see \ the \ details \ on \ our \ website: \ https://arim.cris.hokudai.ac.jp/$

利用申請書の提出(初めてのご利用の方) / Submission of the form for use of the facilities (for the first-time users)
 利用希望者は利用申請書に必要事項を記入の上、複合量子ビーム超高圧顕微解析研究室へご提出ください。
 (注:申請課題毎に利用申請書のご提出が必要です。)

Please submit an application form to Multi-Quantum Beam HVEM Laboratory. (NB: the form must be submitted prior to usage for each time)

3. 設備利用予約 / Booking for the use of the facilities

利用申請後、電話またはメールにて、希望利用設備と日時をお知らせください。 Please inform the person-in charge via phone or e-mail about your booking (which facility to use, date and time) after the submission of the form.

一般利用の方が当施設の設備をご利用希望される方は、以下の手順でお申し込みください。

Anyone intending to use the equipment in our facilities must follow the following procedures:

- 利用申請書の提出(はじめて当施設をご利用の方) / Submission of the form for use of the facilities (for first-time users) 利用希望者は利用申請書に必要事項を記入の上、複合量子ビーム超高圧顕微解析研究室へご提出ください。 Please submit the application form by e-mail to Multi-Quantum Beam HVEM Laboratory.
- 設備利用予約 / Booking for the use of the facilities
 利用申請後、電話またはメールにて、希望利用設備と日時をお知らせください。

Please inform the person-in charge via phone or e-mail about your booking (which facility to use, date and time) after the submission of the form.

■利用料金/Fees

超高圧電子顕微鏡室関連装置の利用料金は複合量子ビーム超高圧顕微解析研究室ウェブサイトの料金表をご覧ください。 Please refer to our website for usage fees for other related facilities.

https://www.eng.hokudai.ac.jp/labo/carem/hvem/img/hvem-price.pdf_ver.3.pdf

利用料金は、オープンファシリティサービスを通じて請求いたします。下記のウェブサイトより、オープンファシリティ サービスの利用申請をお願いいたします。

Usage fees will be billed through the Open Facility service. Please apply to use the Open Facility service from the website below. https://www.gfc.hokudai.ac.jp/

■利用日時/Opening Hours

月~金曜日(祝祭日除く)/Monday to Friday (except public holidays) 9:00-17:00

リモート観察も可能です。ご相談下さい。/ Remote observation is available. Please feel free to contact us.

User's Guide and Access to the Facilities

アクセスマップ/Access map

▶空港~JR 利用 / From New Chitose Airport by JR trains

新千歳空港から快速エアポートに乗車し、札幌駅下車。 その後、地下鉄札幌駅から南北線麻生行きに乗車し、北12条駅又は 北18条駅下車。地下鉄駅より徒歩約10分(経路は上図参照)

Travel to Sapporo Station by Rapid Airport train. Then, travel to Kita 12 Jo or Kita 18 Jo Subway Station of the Namboku line. It is a tenminute walk to the Laboratory of HVEM. (Please see the map.)

▶バス利用 / 北都交通(札幌駅南口まで)又は中央バス(京王プラザホテルまで)

Buses from New Chitose Airport/ By Hokuto Kotsu Bus: Get off at the South Gate of Sapporo Station. By Chuo Bus : Get off at Keio Plaza Hotel.

バス下車後、地下鉄札幌駅から南北線麻生行きに乗車し、北12条駅 又は北18条駅下車。地下鉄駅より徒歩約10分。

After getting off the bus, take a subway of the Namboku line from Sapporo Subway Station to Kita 12 Jo or Kita 18 Jo. It is a ten-minute walk to the Laboratory of HVEM. (Please see the map.)

エネルギー・マテリアル融合領域研究センター 複合量子ビーム超高圧顕微解析研究室

Multi-Quantum Beam HVEM Laboratory Center for Advanced Research of Energy and Materials, Faculty of Engineering of Hokkaido University

https://www.eng.hokudai.ac.jp/labo/carem/hvem/

〒060-8628 北海道札幌市北区北13条西8丁目 Kita 13-jo Nishi 8-chome, Kita-ku, Sapporo 060-8628, JAPAN TEL/FAX:011-706-7300 E-mail:denken@eng.hokudai.ac.jp