

北大院工 折原 宏

1.種々の液晶相
 2.液晶の弾性論
 3.液晶の光学
 4.液晶の流体力学

The Physics of Liquid Crystals

P. G. de Gennes and J. Prost

(Oxford University Press, 1993)

"Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers of this book will feel the same attraction, help to solve the mysteries, and raise new questions."

液晶の物理学 チャンドラセカール(木村,山下訳)(吉岡書店)

液晶の物理 折原 宏(材料学シリーズ,内田老鶴圃) (3600円+税)

らせん構造

層構造

1次元結晶,2次元液体

SmC相

図1.6

細長い

秩序パラメーターと配向ベクトル

秩序パラメーター:分子の配向の程度を表す量

秩序パラメーターの定義

$$\langle a_z \rangle = 1/N \sum_{i=1}^N a_{iz} = 0$$
 $\langle a_z^2 \rangle = 1/N \sum_{i=1}^N a_{iz}^2$

等方相

 $\langle a_z^2 \rangle = 1$

秩序パラメーターSの定義 等方相 S=0 完全配向 S=1 ネマチック相 0<S<1 = $\frac{1}{2}$

$$S = \frac{3}{2} \left(\left\langle a_z^2 \right\rangle - \frac{1}{3} \right)$$
$$= \frac{1}{2} \left(3 \left\langle a_z^2 \right\rangle - 1 \right)$$

スカラー、ベクトル、テンソル

<u>内積</u>

<u>テンソル</u>

$P = \chi E$ (*P*: 分極, *E*: 電場, χ: 電気感受率)

テンソル秩序パラメーター

$$S = \frac{1}{2} \left(3 \left\langle a_z^2 \right\rangle - 1 \right) \quad \textbf{スカラー秩序パラメータ-}$$

$$\int \mathbf{x}$$

$$S_{\alpha\beta} = \frac{1}{2} \left(3 \left\langle a_\alpha a_\beta \right\rangle - \delta_{\alpha\beta} \right) \quad \textbf{=} \mathbf{y} \mathbf{y} \mathbf{y}$$

*S*_{αβ}は2階のテンソル ――> 3本の主軸

$$S_{\alpha\beta} = \frac{S}{2} (3n_{\alpha}n_{\beta} - \delta_{\alpha\beta})$$

フランクの弾性自由エネルギー密度

前提:Sは一定

配向ベクトルは場所に依存 こののののでのです。 こののののののので、

自由エネルギー密度 $f_{d} \in \partial n_{\alpha} / \partial x_{\beta}$ で展開 自由エネルギー $F = \int f_{d} dV$

- 1) f_d はスカラー (f_d は回転に対して不変)
- 2) f_d は $n \rightarrow -n$ に対して不変
- 3) その体積積分が表面積分に変換されるものは除く

フランクの弾性自由エネルギー密度

$$f_{d} = \frac{1}{2}K_{1}(\nabla \cdot \boldsymbol{n})^{2} + \frac{1}{2}K_{2}(\boldsymbol{n} \cdot (\nabla \times \boldsymbol{n}))^{2}$$

$$+ \frac{1}{2}K_{3}(\boldsymbol{n} \times (\nabla \times \boldsymbol{n}))^{2} + K_{2}'\boldsymbol{n} \cdot (\nabla \times \boldsymbol{n}) \qquad (2.22)$$

 $\nabla \equiv (\partial / \partial x, \partial / \partial y, \partial / \partial z)$

 $\nabla \cdot \boldsymbol{n} = \operatorname{div} \boldsymbol{n}, \ \nabla \times \boldsymbol{n} = \operatorname{rot} \boldsymbol{n}$

K_i(*i*=1,2,3): フランクの弾性定数

 K_2 'の項はコレステリック液晶のみで存在

<u>各項の意味</u>

$$\frac{1}{2} K_{1} (\nabla \cdot \mathbf{n})^{2} + \frac{1}{2} K_{2} (\mathbf{n} \cdot (\nabla \times \mathbf{n}))^{2} + \frac{1}{2} K_{2} (\mathbf{n} \cdot (\nabla \times \mathbf{n}))^{2} + \frac{1}{2} K_{3} (\mathbf{n} \times (\nabla \times \mathbf{n}))^{2} + \frac{1}{2} K_{2} (\mathbf{n} \cdot (\nabla \times \mathbf{n}))^{2} + \frac{1}{2} K_{3} (\mathbf{n} \times (\nabla \times \mathbf{n}))^{2} + \frac{1}{2} K_{2} (\mathbf{n} \cdot (\nabla \times \mathbf{n}) + q_{0})^{2} + \frac{1}{2} K_{3} (\mathbf{n} \times (\nabla \times \mathbf{n}))^{2} - \frac{1}{2} K_{2} q_{0}^{2} + \frac{1}{2} K_{3} (\mathbf{n} \times (\nabla \times \mathbf{n}))^{2} - \frac{1}{2} K_{2} q_{0}^{2} + \frac{1}{2} K_{3} (\mathbf{n} \times (\nabla \times \mathbf{n}))^{2} + \frac{1}{2} K_{2} q_{0}^{2} + \frac{1}{2} K_{3} (\mathbf{n} \times (\nabla \times \mathbf{n}))^{2} - \frac{1}{2} K_{2} q_{0}^{2} + \frac{1}{2} K_{3} (\mathbf{n} \times (\nabla \times \mathbf{n}))^{2} + \frac{1}{2} K_{3} (\mathbf{n} \times (\nabla \times \mathbf{n}))^{2} + \frac{1}{2} K_{3} (\mathbf{n} \times (\nabla \times \mathbf{n}))^{2} + \frac{1}{2} K_{3} q_{0}^{2} + \frac{1}{2} K_{3} (\mathbf{n} \times (\nabla \times \mathbf{n}))^{2} + \frac{1}{2} K_{3} q_{0}^{2} + \frac{1}{2} K_{3} (\mathbf{n} \times (\nabla \times \mathbf{n}))^{2} + \frac{1}{2} K_{3} q_{0}^{2} +$$

コレステリック液晶の基底状態 $n \cdot (\nabla \times n) + q_0 = 0$ $n(r) = (\cos q_0 z, \sin q_0 z, 0)$ (z方向にラセン軸) フランクの弾性論の応用

転傾(ディスクリネーション)

配向ベクトルは x-y面に平行

 $\boldsymbol{n}(\boldsymbol{r}) = (\cos\phi(\boldsymbol{r}), \sin\phi(\boldsymbol{r}), 0)$

ネマチック液晶の自由エネルギー密度

$$f_{d} = \frac{1}{2}K_{1}(\nabla \cdot \boldsymbol{n})^{2} + \frac{1}{2}K_{2}(\boldsymbol{n} \cdot (\nabla \times \boldsymbol{n}))^{2} + \frac{1}{2}K_{3}(\boldsymbol{n} \times (\nabla \times \boldsymbol{n}))^{2}$$

$$\int K_{1} = K_{2} = K_{3} = K - \boldsymbol{r}\boldsymbol{z}\boldsymbol{\mathcal{B}}\boldsymbol{\mathcal{I}}\boldsymbol{\mathcal{U}}$$

$$f_{d}\left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}\right) = \frac{1}{2}K\left\{\left(\frac{\partial \phi}{\partial x}\right)^{2} + \left(\frac{\partial \phi}{\partial y}\right)^{2}\right\} \quad (3.47)$$

$$F = \int f_{d} dV \, \mathbf{0} \, \mathbf{w} \, \mathbf{v}$$

 $\phi(\mathbf{r}) \, \mathbf{i} \, \mathbf{w} \, \mathbf{v} \, \mathbf{e} \, \mathbf{5} \, \mathbf{z} \, \mathbf{z} \, \mathbf{c} \, \mathbf{v}, \quad \mathbf{w} \, \mathbf{v} \, \mathbf{v} \, \mathbf{e} \, \mathbf{s} \, \mathbf{z} \, \mathbf{z}$
 $\phi(\mathbf{r}) \to \phi(\mathbf{r}) + \delta \phi(\mathbf{r}) \, \mathbf{c} \, \mathbf{v} \, \mathbf{f} \, \mathbf{s} \, \mathbf{F} \, \mathbf{o} \, \mathbf{e} \, \mathbf{f} \, \mathbf{e} \, \mathbf{e} \, \mathbf{e} \, \mathbf{v} \, \mathbf{e} \,$

ラプラス方程式の解

$$\phi = \mathbf{s}\alpha + c \quad (3.49)$$

ただし, $\alpha = \tan^{-1}(y/x)$ $s = \pm 1, \pm 2, \pm 3, \cdots$ $\pm 1/2, \pm 3/2, \pm 5/2, \cdots$ c:定数

外場(磁場,電場)との相互作用による自由エネルギー

半無限領域に存在するネマチック液晶 に対する磁場の効果

図3.1

$$F = \int f\left(\theta(z), \frac{d\theta}{dz}\right) dz$$
 を極小にする $\theta(z)$

オイラー・ラグランジュ方程式

$$\frac{\partial f}{\partial \theta} - \frac{d}{dz} \frac{\partial f}{\partial (d\theta/dz)} = 0$$

$$\int \vec{z} \vec{z} (3.6)$$

$$\frac{d^2 \theta}{dz^2} + \frac{1}{\xi^2} \sin \theta \cos \theta = 0 \qquad (3.14)$$

力学とのアナロジー
$$\theta \rightarrow x, z \rightarrow t$$

$$\xi^2 \frac{d^2 x}{dt^2} = -\frac{\partial}{\partial x} \left(-\frac{1}{2} \cos^2 x \right)$$
 ポテンシャルエネルギー

図3.2 (b)の解 z = 0で $\theta(0) = 0, z \to \infty$ で $\theta = \pm \pi/2, \frac{\partial \theta}{\partial z} = 0$

$$\tan\left(\frac{\theta}{2} + \frac{\pi}{4}\right) = e^{\pm z/\xi} \qquad \xi = \sqrt{\frac{K_2}{\mu_0^{-1}\Delta\chi}} \cdot \frac{1}{B}$$

微小な磁場に対しても配向の変化が起こる.

フレデリクス転移

2枚の板に挟まれた液晶に対する磁場の効果

図3.3

境界条件 $\theta(0) = \theta(d) = 0$ オイラー・ラグランジュ方程式(3.14)は同じ 図3.2の(a)の解に対応

$$\theta < \theta_{\rm m} << 1$$
のとき, $\sin\theta \cong \theta - \frac{1}{6} \theta^3$ と近似して

$$F = \int_0^d (f_{\rm d} + f_{\rm mag}) dz \cong \frac{1}{2} K_2 \int_0^d \left\{ \left(\frac{\partial \theta}{\partial z} \right)^2 - \frac{1}{\xi^2} \left(\theta^2 - \theta^4 / 3 \right) \right\} dz$$

次に解を正弦波で近似

 $\theta(z) = \theta_{m} \sin(qz)$ 境界条件より $q = \pi / d$ 自由エネルギー *F* に代入して

転移点:θ²_mの係数 = 0

$$B_{c} = \frac{\pi}{d} \sqrt{\frac{K_{2}}{\mu_{0}^{-1} \Delta \chi}}$$
:しきい値

自由エネルギー極小の条件 $\partial F / \partial \theta_{m} = 0$ より

$$\frac{\partial F}{\partial \theta_{\rm m}} = \frac{d}{2} K_2 \theta_{\rm m} \left\{ \left(q^2 - \frac{1}{\xi^2} \right) + \frac{1}{2\xi^2} \theta_{\rm m}^2 \right\} = 0$$

$$B < B_{\rm c} \ (q^2 - \xi^{-2} > 0)$$
のとき, $\theta_{\rm m} = 0$

$$\begin{split} B > B_{\rm c} & (q^2 - \xi^{-2} < 0) \, \mathcal{O} \, \boldsymbol{\xi} \, \boldsymbol{\xi} \\ \theta_{\rm m} &= \pm \sqrt{2} \sqrt{1 - \xi^2 q^2} = \pm \sqrt{2} \sqrt{\frac{B^2 - B_{\rm c}^2}{B^2}} \\ &= \pm \sqrt{2} \sqrt{\frac{(B + B_{\rm c})(B - B_{\rm c})}{B^2}} \cong \pm \sqrt{2} \sqrt{\frac{2B_{\rm c}(B - B_{\rm c})}{B_{\rm c}^2}} = \pm 2 \sqrt{\frac{B - B_{\rm c}}{B_{\rm c}}} \end{split}$$

転傾線のエネルギー的考察

図3.9の転傾のエネルギー 極座標

 $x = \rho \cos \alpha, y = \rho \sin \alpha$

(3.47)から

$$f_{\rm d} = \frac{1}{2} K \left\{ \left(\frac{\partial \phi}{\partial \rho} \right)^2 + \frac{1}{\rho^2} \left(\frac{\partial \phi}{\partial \alpha} \right)^2 \right\}^{(3.49)} = \frac{1}{2} K \frac{s^2}{\rho^2}$$

転傾線の単位長さ当りのエネルギー

$$F = \int f_{\rm d} dx dy = \int_{a}^{\rho_{\rm max}} \frac{1}{2} K \frac{s^2}{\rho^2} 2\pi \rho d\rho = \pi K s^2 \log(\rho_{\rm max} / a) \quad (3.55)$$

ρ_{max}: 容器の大きさ , *a*: コアの大きさ

転傾線の張力のline

$$\sigma_{\text{line}} = \left(\frac{\partial F_l}{\partial l}\right)_T$$

 $F_l = Fl LU$

 F_l :長さlの転傾線のエネルギー

ループの運動方程式

"Formation, Dynamics and Statistics of Patterns" (World Scientific, 1993)

転傾間の相互作用

$$(3.59) \mathcal{E}(3.61) \mathbf{D}^{\mathbf{b}} \mathcal{E}_{x}, \mathcal{E}_{y}) = \left(s_{1} \frac{x}{x^{2} + y^{2}} + s_{2} \frac{x - d}{(x - d)^{2} + y^{2}}, s_{1} \frac{y}{x^{2} + y^{2}} + s_{2} \frac{y}{(x - d)^{2} + y^{2}}\right)$$

一方,誘電率 この媒質中の2本の線電荷に対して

$$(E_{x}, E_{y}) = \left(\frac{\sigma_{1}}{2\pi\varepsilon} \frac{x}{x^{2} + y^{2}} + \frac{\sigma_{2}}{2\pi\varepsilon} \frac{x - d}{(x - d)^{2} + y^{2}}, \frac{\sigma_{1}}{2\pi\varepsilon} \frac{y}{x^{2} + y^{2}} + \frac{\sigma_{2}}{2\pi\varepsilon} \frac{y}{(x - d)^{2} + y^{2}}\right)$$

$$\sigma_{i}: i 番目の線電荷の単位長さ当たりの電荷量$$

両式を比較して

$$s_1 = \frac{\sigma_1}{2\pi\epsilon}, \ s_2 = \frac{\sigma_2}{2\pi\epsilon}$$
 (3.65)

誘電率εの媒質中の2本の線電荷間に働く単位長さ当たりの力は

転傾間に働く力はその間の距離に反比例し,それぞれの強度 に比例する.強度が同符号であれば斥力,異符号であれば引 力となる.

転傾の運動方程式

l:転傾間距離,G:定数

等方媒質中の光の伝播

誘電率 ε₀ε, ε₀: 真空の誘電率, ε: 比誘電率 *z*方向に進行する波

 $E_{x}(z,t) = a\cos(kz - \omega t + \delta_{1}), E_{y}(z,t) = 0 \quad (1.a)$ $E_{x}(z,t) = 0, E_{y}(z,t) = b\cos(kz - \omega t + \delta_{2}) \quad (1.b)$

波数 $k = 2\pi n / \lambda$,屈折率 $n = \sqrt{\varepsilon}$, λ :真空中の光の波長

(1.a)と(1.b)は独立な固有モード(直線偏光)

図5.4

円偏光

(1.a)と(1.b)の線形結合 $E_x(z,t) = a\cos(kz - \omega t + \delta_1), E_y(z,t) = a\sin(kz - \omega t + \delta_1)$ 右円偏光 $E_x(z,t) = b\cos(kz - \omega t + \delta_2), E_y(z,t) = -b\sin(kz - \omega t + \delta_2)$ 左円偏光

$$E_{x}(z,t) = a\cos(kz - \omega t + \delta_{1}), E_{y}(z,t) = b\cos(kz - \omega t + \delta_{2})$$

異方媒質中の光の伝播

誘電率は2階のテンソル

$$\begin{pmatrix} \varepsilon_x & 0 & 0 \\ 0 & \varepsilon_y & 0 \\ 0 & 0 & \varepsilon_z \end{pmatrix}$$

z方向へ進行する光

$$\begin{split} E_x(z,t) &= a\cos(k_x z - \omega t + \delta_1), \ E_y(z,t) = 0\\ E_x(z,t) &= 0, \ E_y(z,t) = b\cos(k_y z - \omega t + \delta_2)\\ k_x &= 2\pi n_x / \lambda \text{ , } n_x = \sqrt{\varepsilon_x}\\ k_y &= 2\pi n_y / \lambda \text{ , } n_y = \sqrt{\varepsilon_y} \end{split}$$

図3.11

入射光
$$E_x(z,t) = E_0 e^{i(kz-\omega t)}$$

液晶中の光
 $E_{\perp}(z,t) = -E_0 \sin\alpha e^{i(2\pi n_{\perp}/\lambda \cdot z-\omega t)}$
 $E_{\parallel}(z,t) = E_0 \cos\alpha e^{i(2\pi n_{\parallel}/\lambda \cdot z-\omega t)}$
 n_{\parallel}, n_{\perp} :配向ベクトルに平行
および垂直な方向の屈折率
液晶を透過後のx方向の電場
 $E_y(d,t) = E_{\parallel}(d,t) \sin\alpha + E_{\perp}(d,t) \cos\alpha$
 $= \frac{1}{2}E_0 \sin 2\alpha \left(e^{i2\pi n_{\parallel}d/\lambda} - e^{i2\pi n_{\perp}d/\lambda}\right)e^{-i\omega t}$
透過光強度

$$I = \left| E_{y} \right|^{2} = I_{0} \sin^{2} 2\alpha \sin^{2} \frac{\pi n_{a} d}{\lambda}, \quad n_{a} = n_{\parallel} - n_{\perp} : \mathbf{EI} \mathbf{f} \mathbf{x} \mathbf{z} \mathbf{z} \mathbf{f} \mathbf{z}$$

偏光顕微鏡で見た転傾

図3.12

コレステリック液晶中の光の伝播

マクスウェル方程式

コレステリック液晶のらせん軸方向(z方向)に光が進行する場合 $E(\mathbf{r},t) = (E_x(z,t), E_y(z,t), 0), H(\mathbf{r},t) = (H_x(z,t), H_y(z,t), 0)$

$$\nabla \times \boldsymbol{H} = \frac{\partial \boldsymbol{D}}{\partial t} = \varepsilon_0 \varepsilon \frac{\partial \boldsymbol{E}}{\partial t}, \ \nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t} = -\mu_0 \frac{\partial \boldsymbol{H}}{\partial t}$$

$$\frac{\varepsilon}{c^2} \frac{\partial^2 \boldsymbol{E}}{\partial t^2} = -\nabla \times (\nabla \times \boldsymbol{E}) = \Delta \boldsymbol{E} - \nabla (\nabla \cdot \boldsymbol{E}) = \frac{\partial^2 \boldsymbol{E}}{\partial z^2} \quad (5.45)$$

ただし,誘電率テンソルは式(3.2)より

$$\mathbf{\epsilon}(z) = \begin{pmatrix} (\varepsilon_{\parallel} + \varepsilon_{\perp})/2 & 0 & 0\\ 0 & (\varepsilon_{\parallel} + \varepsilon_{\perp})/2 & 0\\ 0 & 0 & \varepsilon_{\perp} \end{pmatrix} + \frac{\varepsilon_{a}}{2} \begin{pmatrix} \cos 2q_{0}z & \sin 2q_{0}z & 0\\ \sin 2q_{0}z & -\cos 2q_{0}z & 0\\ 0 & 0 & 0 \end{pmatrix}$$

 q_0 :らせんの波数

$$E(z,t) = \frac{1}{2}E(z)e^{-i\omega t} + \frac{1}{2}E(z)*e^{i\omega t}$$
$$= \operatorname{Re}[E(z)e^{-i\omega t}]$$

$E^{\pm}(z) \equiv E_{x}(z) \pm iE_{y}(z)$ を定義する

 $E^+(z)$ と $E^-(z)$ はz軸の正の方向に伝播する場合には それぞれ右および左円偏光を表す

例えば
$$(E^+(z), E^-(z)) = (e^{ikz}, 0) (k > 0)$$
とおくと
 $(E_x(z), E_y(z)) = (e^{ikz}/2, -ie^{ikz}/2)$
さらに,
 $(E_x(z,t), E_y(z,t)) = (\cos(kz - \omega t)/2, \sin(kz - \omega t)/2)$

$$E^{\pm}(z) \equiv E_x(z) \pm i E_y(z)$$
を方程式(5.45)に代入すると

$$-\frac{\mathrm{d}^{2}}{\mathrm{d}z^{2}} \begin{pmatrix} E^{+}(z) \\ E^{-}(z) \end{pmatrix} = \begin{pmatrix} k_{0}^{2} & k_{1}^{2} \,\mathrm{e}^{i2q_{0}z} \\ k_{1}^{2} \,\mathrm{e}^{-i2q_{0}z} & k_{0}^{2} \end{pmatrix} \begin{pmatrix} E^{+}(z) \\ E^{-}(z) \end{pmatrix}$$
$$k_{0}^{2} = \left(\frac{\omega}{c}\right)^{2} \overline{\varepsilon}, \quad k_{1}^{2} = \left(\frac{\omega}{c}\right)^{2} \frac{\varepsilon_{\mathrm{a}}}{2}$$
$$\overline{\varepsilon} = (\varepsilon_{\mathrm{a}} + \varepsilon_{\mathrm{b}})/2, \quad \varepsilon_{\mathrm{a}} = \varepsilon_{\mathrm{a}} - \varepsilon_{\mathrm{b}}$$

$$E^{+}(z) = a e^{i(l+q_{0})z},$$

$$E^{-}(z) = b e^{i(l-q_{0})z}$$
と仮定すると
(5.60)

$$\begin{pmatrix} (l+q_0)^2 - k_0^2 & -k_1^2 \\ -k_1^2 & (l-q_0)^2 - k_0^2 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = 0$$
 (5.61)

上式が同時にゼロ以外の解を持つためには $\begin{vmatrix} (l+q_0)^2 - k_0^2 & -k_1^2 \end{vmatrix} = (k^2 - l^2 - a^2)^2 - 4a^2l^2 - a^2l^2 - 4a^2l^2 - a^2l^2 - a^2l$

$$\begin{vmatrix} (l+q_0) & -k_0 & -k_1 \\ -k_1^2 & (l-q_0)^2 - k_0^2 \end{vmatrix} = (k_0^2 - l^2 - q_0^2)^2 - 4q_0^2 l^2 - k_1^4 = 0$$
(5.62)

ωについて解くと

$$\omega_{\pm}^{2}(l) = \frac{c^{2}}{\overline{\varepsilon}} \frac{(l^{2} + q_{0}^{2}) \pm \sqrt{4q_{0}^{2}l^{2} + (\varepsilon_{a}/2\overline{\varepsilon})^{2}(l^{2} - q_{0}^{2})^{2}}}{1 - (\varepsilon_{a}/2\overline{\varepsilon})^{2}}$$

+R: z**軸の正の方向に進行する右円偏光** -L: z**軸の負の方向に進行する左円偏光**

以下の角周波数領域で*l* は純虚数 ±*i*κ (κ > 0)

$$\omega_{-}(0) < \omega < \omega_{+}(0) \quad \left(\omega_{-}(0) = \frac{cq_{0}}{n_{\parallel}}, \ \omega_{+}(0) = \frac{cq_{0}}{n_{\perp}}\right)$$

このとき,式(5.60)から

$$E^{+}(z) = a e^{i(l+q_0)z} = a e^{\mp \kappa z} e^{iq_0 z},$$
$$E^{-}(z) = b e^{i(l-q_0)z} = b e^{\mp \kappa z} e^{-iq_0 z}$$

十分厚い試料では完全反射が起こる

ただし,右巻きらせんに対しては右円偏光が完全反射し, 左円偏光は透過する

式 (5.62)より, ギャップ付近と高周波を除き $k_{\rm L} \cong k_0 + \frac{k_1^4}{8k_0q_0(q_0 + k_0)}$ $k_{\rm R} \cong k_0 + \frac{k_1^4}{8k_0q_0(q_0 - k_0)}$

式(5.39)から,単位長さ当りの偏光方向の回転角は

$$(k_{\rm L} - k_{\rm R}) / 2 = \frac{k_{\rm l}^4}{8q_0(k_0^2 - q_0^2)}$$
$$= \frac{q_0}{32} \left(\frac{n_{\rm H}^2 - n_{\rm L}^2}{n_{\rm H}^2 + n_{\rm L}^2}\right)^2 \frac{1}{\lambda'^2(1 - \lambda'^2)}$$

 $\lambda' = \lambda / P = q_0 / k_0, \lambda : 真空中の光の波長, P : らせんのフルピッチ$

高周波領域 ω 大 l 大 $(\lambda << (n_1 - n_1)P)$ 式(5.62)から $l \approx \frac{\omega}{c} n_{\Box} (\omega_{-}(l) \vec{\mathcal{I}} \vec{\mathcal{I}} \vec{\mathcal{I}} \vec{\mathcal{I}}) \qquad l \approx \frac{\omega}{c} n_{\bot} (\omega_{+}(l) \vec{\mathcal{I}} \vec{\mathcal{I}} \vec{\mathcal{I}} \vec{\mathcal{I}})$ 式(5.61)より $\begin{pmatrix}
E_x(z,t) \\
E_y(z,t)
\end{pmatrix} = a\cos(lz - \omega t)
\begin{pmatrix}
\cos q_0 z \\
\sin q_0 z
\end{pmatrix}
\begin{pmatrix}
E_x(z,t) \\
E_y(z,t)
\end{pmatrix} = a\sin(lz - \omega t)
\begin{pmatrix}
-\sin q_0 z \\
\cos q_0 z
\end{pmatrix}$ 配向ベクトル $n(z) = \begin{pmatrix} \cos q_0 z \\ \sin q_0 z \end{pmatrix}$ に平行

TN(Twisted Nematic)型液晶ディスプレイ

フレデリクス転移のしきい値

$n(z) = (\sin\theta(z)\cos\phi(z), \sin\theta(z)\sin\phi(z), \cos\theta(z))$ を自由エネルギー密度に代入すると

$$f_{\rm d} = \frac{1}{2} g(\theta) \left(\frac{\partial \theta}{\partial z}\right)^2 + \frac{1}{2} h(\theta) \left(\frac{\partial \phi}{\partial z}\right)^2$$
$$g(\theta) = K_1 \sin^2 \theta + K_3 \cos^2 \theta, \ h(\theta) = (K_2 \sin^2 \theta + K_3 \cos^2 \theta) \sin^2 \theta$$

$$\theta = \pi / 2 - \psi \quad (\psi <<1) を代入すると$$

$$f_{\rm d} = \frac{1}{2} K_1 \left(\frac{\partial \psi}{\partial z}\right)^2 + \frac{1}{2} \left\{ K_2 + (K_3 - 2K_2) \psi^2 \right\} \left(\frac{\partial \phi}{\partial z}\right)^2 - \frac{1}{2} \varepsilon_0 \Delta \varepsilon \psi^2 E^2$$
(5.86)

ただし,式(3.3)を書き換えた電場との相互作用の項を加えた

近似式 $\psi = \psi_{m} \sin(\pi z/d), \phi = \phi_{0}(2z/d-1)$ を式(5.86)に代入し,積分すると

$$F/d = \frac{1}{4} \left[K_1 \left(\frac{\pi}{d} \right)^2 + (K_3 - 2K_2) \left(\frac{2\phi_0}{d} \right)^2 - \varepsilon_0 \Delta \varepsilon E^2 \right] \Psi_m^2 + \frac{1}{2} K_2 \left(\frac{2\phi_0}{d} \right)^2$$

$$\psi_{\rm m}^2 \quad \mathcal{O}$$
係数ゼロがしきい値
 $V_{\rm c} = \frac{2}{(\varepsilon_0 \Delta \varepsilon)^{1/2}} \left[K_1 \left(\frac{\pi}{2} \right)^2 + (K_3 - 2K_2) \phi_0^2 \right]^{1/2}$

液晶の流体力学

ネマチック液晶の状態:配向ベクトル場 + 流れの速度場 v(r):速度場 v(r): v(r+vdt, t+dt)

質量の保存 $\frac{\partial \rho}{\partial t} = -\operatorname{div}(\rho v)$ ρ : 密度 非圧縮性 $\rho = -c$ $\operatorname{div} v = 0$

加速度

$$\frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}t} \equiv \frac{\boldsymbol{v}(\boldsymbol{r} + \boldsymbol{v}dt, t + \mathrm{d}t) - \boldsymbol{v}(\boldsymbol{r}, t)}{\mathrm{d}t}$$
$$= \frac{\partial \boldsymbol{v}}{\partial t} + (\boldsymbol{v} \cdot \mathrm{grad})\boldsymbol{v}$$

流れに沿っての変化を見た微分 ラグランジュ微分(物質微分)

速度場の方程式

$$\rho \, \frac{\mathrm{d} v_{\alpha}}{\mathrm{d} t} \equiv \rho \left(\frac{\partial v_{\alpha}}{\partial t} + v_{\beta} \, \frac{\partial v_{\alpha}}{\mathrm{d} x_{\beta}} \right) = \frac{\partial \sigma_{\beta \alpha}}{\mathrm{d} x_{\beta}}$$

応力テンソル $\sigma_{\alpha\beta}$ の表式 等方性流体の場合は速度勾配 $\partial v_{\beta} / \partial x_{\alpha}$ の関数

$$\frac{\partial v_{\alpha}}{\partial x_{\beta}} = A_{\alpha\beta} + W_{\alpha\beta}$$

$$A_{\alpha\beta} = \frac{1}{2} \left(\frac{\partial v_{\alpha}}{\partial x_{\beta}} + \frac{\partial v_{\beta}}{\partial x_{\alpha}} \right) \qquad (4.16a) \text{ Immin}$$

$$W_{\alpha\beta} = \frac{1}{2} \left(\frac{\partial v_{\alpha}}{\partial x_{\beta}} - \frac{\partial v_{\beta}}{\partial x_{\alpha}} \right) \qquad (4.16b) \text{ Immin}$$

角速度ベクトル $\omega = (-W_{yz}, -W_{zx}, -W_{xy})$

ずり流れ

$\sigma_{\alpha\beta}$: α 軸に垂直な面の正の側から負の側が受ける 単位面積あたりの力の β 成分

単位面積当りの力

 $\sigma_{\beta\alpha}n_{\beta}$

単位体積当りの力 $f_{\alpha}^{(s)} = \partial \sigma_{\beta \alpha} / \partial x_{\beta}$

等方性流体の応力テンソル

$$\sigma_{\alpha\beta} = \sigma_{\alpha\beta}^{(\text{visc})} - p\delta_{\alpha\beta}$$

粘性応力

$$\sigma_{\alpha\beta}^{(\text{visc})} = 2\eta A_{\alpha\beta} = \eta \left(\frac{\partial v_{\alpha}}{\partial x_{\beta}} + \frac{\partial v_{\beta}}{\partial x_{\alpha}} \right)$$

 $\eta:$ 粘性係数

p:**圧力**

非圧縮性流体のナビエ・ストークス方程式

$$\rho \frac{\partial v_{\alpha}}{\partial t} + \rho v_{\beta} \frac{\partial}{\partial x_{\beta}} v_{\alpha} = \frac{\partial}{\partial x_{\alpha}} p + \eta \Delta v_{\alpha}$$

 $\frac{\partial v_{\alpha}}{\partial x_{\alpha}} = 0$

配向ベクトルの運動方程式

$$I\frac{\mathrm{d}\Omega}{\mathrm{d}t} = \Gamma$$

I: 単位体積当たりの慣性モーメント Γ: 単位体積当たりのトルク

「の表式

分子場h(r):自由エネルギーから生ずる配向ベクトルに働く 単位体積当たりの力 $n(r) \rightarrow n(r) + \delta n(r)$ $\delta F = -\int \mathbf{h}(\mathbf{r}) \cdot \delta \mathbf{n}(\mathbf{r}) \mathrm{d}V$ (4.26) $h_{\alpha}(\mathbf{r}) = -\left(\frac{\partial f_{\mathrm{d}}}{\partial n} - \frac{\partial}{\partial x_{\mathrm{o}}}\left(\frac{\partial f_{\mathrm{d}}}{\partial (\partial n / \partial x_{\mathrm{o}})}\right)\right) = -\frac{\delta F}{\delta n}$ (4.27)

 $\delta F = -\int h(r) \cdot \delta n(r) dV = -\int (n(r) \times h(r)) \cdot (n(r) \times \delta n(r)) dV$ $e\delta\theta = n \times \delta n : 回転角 \Rightarrow \Gamma^{(F)} = n \times h : 単位体積当りのトルク$ (4.56) ・2種類の粘性トルク Γ₁^(visc), Γ₂^(visc)

Nの定義:流れに対する配向ベクトルの相対的変化速度

$$\frac{dn}{dt} = \Omega \times n$$
 実験室系に対して

$$N \equiv (\Omega - \omega) \times n = \frac{dn}{dt} - \omega \times n$$
(4.55) 流れに対して

配向ベクトルの回転に対する抵抗 $-\gamma_1\Omega$?

流れによる回転 ω を差し引く必要(相対的な回転) $(\Omega - \omega) = n \times N + (n \cdot \Omega_0)n$ ((4.55)から)

非回転流から受ける粘性トルク

$$\Gamma_{2}^{\text{(visc)}} = -\gamma_{2}\boldsymbol{n} \times \boldsymbol{A}\boldsymbol{n}$$

配向ベクトルの運動方程式

$$\sigma_{\alpha\beta} = \sigma_{\alpha\beta}^{(e)} + \sigma_{\alpha\beta}^{(visc)}$$

エリクセンの応力(自由エネルギーに起因する力)

$$\boldsymbol{\sigma}_{\beta\alpha}^{(e)} = -\frac{\partial f_{d}}{\partial (\partial n_{\gamma} / \partial n_{\beta})} \frac{\partial n_{\gamma}}{\partial x_{\alpha}} - p \delta_{\alpha\beta}$$

粘性応力

$$+\alpha_2 n_\alpha N_\beta + \alpha_3 n_\beta N_\alpha \qquad \left(N = (\Omega - \omega) \times n = \frac{\mathrm{d}n}{\mathrm{d}t} - \omega \times n \right)$$

 α_i : 粘性係数

 $\alpha_1 n_{\alpha} n_{\beta} n_{\mu} n_{\rho} A_{\mu\rho}$ 非回転流 $A_{xx} = 1, A_{yy} = -1$ $\boldsymbol{n} = (n_x, n_y, 0)$ $n_{\alpha}n_{\beta}n_{\mu}n_{\rho}A_{\mu\rho} \Longrightarrow \left(n_{x}^{2}-n_{y}^{2}\right) \left(\begin{array}{cc}n_{x}^{2}&n_{x}n_{y}\\n_{x}n_{y}&n_{y}^{2}\end{array}\right)$ $\mathbf{n} = (1/\sqrt{2}, 1/\sqrt{2}, 0)$ $\mathbf{n} = (0, 1, 0)$ $\mathbf{n} = (1, 0, 0)$

(d) α_2 (e) α_3

 $\gamma_1 = \alpha_3 - \alpha_2$ $\gamma_2 = \alpha_6 - \alpha_5$

パロディの関係式 $\alpha_6 - \alpha_5 = \alpha_2 + \alpha_3$

エリクセン・レスリー方程式のまとめ

$$\rho \frac{dv_{a}}{dt} = \frac{\partial}{\partial x_{\beta}} \left(\sigma_{\beta\alpha}^{(e)} + \sigma_{\beta\alpha}^{(visc)} \right)$$
(4.76a) 速度場
 $I \frac{\partial \Omega}{\partial t} (=0) = n \times h - \gamma_{1} n \times \left(\frac{dn}{dt} - \omega \times n \right) - \gamma_{2} n \times An$ 配向ベクトル場
 $\frac{\partial v_{a}}{\partial x_{a}} = 0$ (4.76c) 非圧縮性条件
 $\sigma_{\alpha\beta}^{(visc)} = \alpha_{4} A_{\alpha\beta} + \alpha_{1} n_{\alpha} n_{\beta} n_{\mu} n_{\rho} A_{\mu\rho} + \alpha_{5} n_{\alpha} n_{\mu} A_{\mu\beta} + \alpha_{6} n_{\beta} n_{\mu} A_{\mu\alpha} + \alpha_{2} n_{\alpha} N_{\beta} + \alpha_{3} n_{\beta} N_{\alpha}$ (4.77)
 $\sigma_{\beta\alpha}^{(e)} = -\frac{\partial f}{\partial (\partial n_{\gamma} / \partial n_{\beta}) \partial x_{\alpha}} - p \delta_{\alpha\beta}$ (4.78a)
 $h_{\alpha} = \frac{\partial}{\partial x_{\beta}} \left(\frac{\partial f}{\partial (\partial n_{\alpha} / \partial x_{\beta})} \right) - \frac{\partial f_{d}}{\partial n_{\alpha}}$ (4.78b)
 $N_{\alpha} = \frac{dn_{\alpha}}{dt} - (\omega \times n)_{\alpha} = \frac{dn_{\alpha}}{dt} - W_{\alpha\beta} n_{\beta}$ (4.78c)
変数 v, n, p (自由度 6) 方程式の数 6

ミーソビッツの粘性係数

- ミーソビッツの粘性係数
- (a) **配向ベクトルが速度勾配に平行な場合** $(\theta = 90^\circ, \phi = 0^\circ)$ $\eta_1 = \frac{1}{2}(-\alpha_2 + \alpha_4 + \alpha_5)$
- (b) **配向ベクトルが流れに平行な場合** $(\theta = 0^{\circ})$ $\eta_2 = \frac{1}{2} (\alpha_3 + \alpha_4 + \alpha_6)$
- (c) **配向ベクトルが流れと速度勾配に垂直な場合**($\theta = 90^{\circ}, \phi = 90^{\circ}$) $\eta_3 = \frac{1}{2}\alpha_4$

配向ベクトルに束縛がない場合

図4.12(c)の場合

(4.63),(4.80),(4.81)から

$\Gamma^{(visc)} = 0$ \Box \Box \Box \Box

図4.12(a)と(b)を含む一般的な場合(φ = 0) $n = (\sin\theta, 0, \cos\theta), (4.63), (4.81)$ $\Gamma_{v}^{(\text{visc})} = -\gamma_{1}(n_{z}N_{x} - n_{x}N_{z}) - \gamma_{2}(n_{z}n_{u}A_{ux} - n_{x}n_{u}A_{uz})$ $= -\frac{1}{2}\dot{\gamma} \left\{ \gamma_1 + \gamma_2 \cos 2\theta \right\}$ $\Gamma_v^{(\text{visc})} = 0$

 $\cos 2\theta_0 = -\gamma_1 / \gamma_2 (|\gamma_1 / \gamma_2| < 1$ の場合) θ_0 : 流動配向角

フレデリクス転移のダイナミクス

図3.3のセルにおいて磁場が変化する場合 v(r,t=0) = 0ならば (4.78c)および(4.77)からv(r,t) = 0 $\omega = 0, A = 0$ とし (4.76b)のz成分のみを考慮すればよい

$$\gamma_1 \left(\boldsymbol{n} \times \frac{\mathrm{d}\boldsymbol{n}}{\mathrm{d}t} \right)_z = \left(\boldsymbol{n} \times \boldsymbol{h} \right)_z$$

一方, (4.56)から

$$\delta F = -\int (n \times h) \cdot e \delta \theta \, dV = -\int (n \times h)_z \delta \theta \, dV$$

 $\therefore (n(r) \times h(r))_z = -\frac{\delta F}{\delta \theta}$
また, $n = (\cos \theta, \sin \theta, 0)$ から
 $\left(n \times \frac{\mathrm{d}n}{\mathrm{d}t}\right)_z = \frac{\mathrm{d}\theta}{\mathrm{d}t}$

$$\gamma_1 \frac{d\theta}{dt} = -\frac{\delta F}{\delta \theta} \stackrel{(3.6)}{=} K_2 \frac{\partial^2 \theta}{\partial z^2} + \mu_0^{-1} \Delta \chi B^2 \sin \theta \cos \theta$$

境界条件: $\theta(0) = \theta(d) = 0$

簡単な例

しきい値以上の磁場での平衡状態から磁場を切った場合 B = 0とおき,解を $\theta(z,t) = \theta_m(t)\sin(qz)(q = \pi/d)$ とすると

$$\frac{d\theta_{m}}{dt} = -\frac{\pi^{2}K_{2}}{\gamma_{1}d^{2}}\theta_{m}$$

$$(t) = \theta_{m}(0)\exp(-t/\tau), \ \tau = \gamma_{1}d^{2}/\pi^{2}K_{2}$$