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IntroductionIntroduction
◆ Characteristic of failure in concrete structures

◆◆ Homogenized crack modelHomogenized crack model

◆◆ Volume control methodVolume control method

Modeling for cracked RC and ECCModeling for cracked RC and ECC
◆◆ Constitutive equations of RC/ Layered shell elementConstitutive equations of RC/ Layered shell element

◆ Modeling of ECC as re-strengthening material

Analysis results and comparisonAnalysis results and comparison
◆ RCCV subjected to internal pressure

◆ RC tank , RC slab, and RC box culvert subjected to various loading

◆ RC hollow column subjected to lateral loading

◆ Verification with PCCV 

Conclusion and future workConclusion and future work
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Performance of deteriorated/repaired RC structures ?Performance of deteriorated/repaired RC structures ?
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Characteristics of concrete fracture and analysisCharacteristics of concrete fracture and analysis

Material instability

Micro cracksMicro cracks Major macro cracksMajor macro crackslocalize

Softening behavior
Decreased load resistant 
capacity after peak
Localized strain

Softening behavior
Decreased load resistant 
capacity after peak
Localized strain

Numerical problem in concrete 
fracture analysis :

Loss of ellipticity of governing equation
Ill-posed boundary value problem

Numerical problem in concrete 
fracture analysis :

Loss of ellipticity of governing equation
Ill-posed boundary value problem

Numerical drawback
(Mesh sensitivity)

Numerical drawback
(Mesh sensitivity)
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Structural instability 

Sources of NonSources of Non--linearity ; Material, Geometrical, Boundary and Contactlinearity ; Material, Geometrical, Boundary and Contact
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Effort to solve material instability in progressive 
fracture analysis of concrete using FEM

Embedded discontinuities approximations (in 1990’s)Embedded discontinuities approximations (in 1990’s)

Homogenized crack modelHomogenized crack model

• Strain-stress relationship
• Discontinuity : strain localization 
zone

Continuum approximation

• Displacement jump-traction
• Discontinuity : crack

Discrete approximation

• Strain localization band width is finite 
(k ≫ 0)

Weak discontinuities

• Strain localization band width is very 
small (k → 0)

Strong discontinuities

Discrete crack model and smeared crack model (in 1980’s)Discrete crack model and smeared crack model (in 1980’s)
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Effort to solve structural instability in progressive 
failure of concrete shell structures using FEM

Failure analysis of RC shell structures subjected to various loaFailure analysis of RC shell structures subjected to various loadingsdings

Load Control MethodLoad Control Method : difficulty to obtain post: difficulty to obtain post--peakpeak
ultimate behavior of RC structuresultimate behavior of RC structures

Displacement Control MethodDisplacement Control Method : difficulty to select a   : difficulty to select a   
representative point for displacement  representative point for displacement  
control in 3D control in 3D 

Remove the drawback of load 
control method

overcome the limitation for 
displacement control method

Volume Control Volume Control 
MethodMethod

Layered shell utilizing 
in-plane constitutive 

models of RC



CMME Lab. Yonsei Univ.

Volume Control Method with Pressure NodeVolume Control Method with Pressure Node

Pressure Node : the uniform change of applied pressure on the Pressure Node : the uniform change of applied pressure on the shell shell 

element element ((∆∆pp)  ()  (Song and Song and TassoulasTassoulas, IJNME, 1993 ), IJNME, 1993 )
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Path dependant pseudoPath dependant pseudo--volume control techniquevolume control technique

Pseudo Volume Pseudo Volume ( Song et. al, J. ( Song et. al, J. StrStr. Eng. 2002 ). Eng. 2002 )

PathPath--dependent Volume dependent Volume ( Song et. al, Nuclear Eng. and Design, 2003 )( Song et. al, Nuclear Eng. and Design, 2003 )
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A

Loading condition checking
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Pressure Node ← External modified pseudo volume increment ΔVm
ext

Compute volume change ΔVi
int using displacement increment Δuk

i

Using Stiffness matrix                   
added Volume-Pressure relation term

Residual volume  ΔVi
R = Δvm

ext - ΔVi
int

Out of balanced

Element stiffness and nodal vector ; Ke
i＆ Fe

i

Assemble and compute RHS vector ; Ki＆ Fi

Compute residual pressure using residual volume

[Δui, Δpi]T = [Ki]-1[pi, ΔVRI]T

Δpi +1 = Δpi +  δpi +1                                                              

Δui +1 = Δui +  δui +1 

Checking convergence

δpi +1   < ㅣtoleranceㅣ

ΔVi
R < ㅣtoleranceㅣ

At every Gauss point 

Calculate strain increment
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obtain unit vector, n
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orthogonal two-way fixed crack model
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Layered shell elementLayered shell element

Degenerated, isoparametric, serendipity, quadratic shell element with drilling degree of freedom

Geometrical nonlinearity is considered by adopting total Lagrangian formulation

In plane constitutive laws applied to each layer of element consists of RC layers and PL layers
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Constitutive law for each layerConstitutive law for each layer

Layered RC element

RC layer

Concrete layer

Concrete stress Steel stress

ㅡㅡ Concrete under compression : Concrete under compression : ElastoElasto--plastic fracture model (Maekawa et. al) plastic fracture model (Maekawa et. al) 
ㅡㅡ Cracked concrete : Smeared fixed crack model                    Cracked concrete : Smeared fixed crack model                    
ㅡㅡ Concrete under shear : Crack density model (Maekawa and Li)   Concrete under shear : Crack density model (Maekawa and Li)   

Shear locking + Membrane lockingShear locking + Membrane locking

Reduced integration ( 2 Reduced integration ( 2 ΧΧ 2 Gaussian 2 Gaussian quadraturequadrature ))
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In-plane constitutive models of cracked concrete

local strain of concrete

shear slip along  crack
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Cracking criteria of concrete

Cracking is affected by past loading history.
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< Failure envelope in tension-compression domain > < Normalized tensile strength and fracture parameter >

By taking account influence of continuum fracture in past compression, cracking criterion can 
be defined in the space of biaxial principal stresses

Compression-tension domain Where, σ1, σ2 : principal stress (σ1 > σ2)

ft : uniaxial tensile strength

Rf : tensile strength reduction factorTension-tension domain
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Tension stiffening model

Concrete model under tensile stress is unrelated to spacing of cracks, direction of  reinforcing 
bars and reinforcement ration.

Tension stiffening effect is known to increase overall stiffness of RC in tension compared with 
that of single reinforcing bar.

< Tension stiffening model for deformed bars (c=0.4) and welded meshes (c=0.2) >

Where, σt : average tensile stress, ε : average tensile strain

ft : uniaxial tensile strength, εtu : cracking strain

c : stiffening parameter
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Steel model

Reinforcing bar model is based on the assumed cosine distribution of bar stress and concrete 
tension stiffening. 

Where, fyt(-fyt) : Bare bar yield strength

fyt1 : Yield strength of bar in concrete

Es : Initial bar stiffness (before yielding)

Eb : Bauchinger’s effect stiffness

Eb = EB           (ε0 > 0)

= 1 / (εp / fc+ 1/ Es)

ε0 = εp + fc (1/ Es - 1/ EB)

EB = - Es log10(10 εp)/6
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MultiMulti--directional smeared crack approachdirectional smeared crack approach

OneOne--way active crack governs the overall nonlinearity as for inway active crack governs the overall nonlinearity as for in--plane cyclic shearplane cyclic shear
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TwoTwo--way active cracks may control the overall nonlinearity way active cracks may control the overall nonlinearity 
as for out of plane cyclic actionas for out of plane cyclic action
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Orthogonal two-way fixed crack model

Reinforced concrete

Already crack 
occurred?

Calculation of unun--cracked concretecracked concrete stress 
according to loading conditions
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Calculation of 

strain 

according to 
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Y

X
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Xs
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Calculation of x, y directional 

reinforcement stress using 

reinforcement  modelreinforcement  model

History renewal of concrete ＆ reinforcement 

Combination of concrete stress＆ reinforcement stress

Stress of reinforced concrete
Transform stress into global coordinate

crack 
occurred?

Y

X

Yc Xc
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Calculation of 

stress 

in coordinates 

about cracks

Calculation of cracked concretecracked concrete stress using 

constitutiveconstitutive models models 

Compression model parallel to crack directionCompression model parallel to crack direction

Tension model normal to crack directionTension model normal to crack direction

-- tension stiffening model for concrete in RCtension stiffening model for concrete in RC

-- tension softening model for plain concretetension softening model for plain concrete

-- modeling of unloadingmodeling of unloading--reloading pathreloading path

ReRe--contact modelcontact model

Coupled compressionCoupled compression--tension modeltension model
Shear transfer modelShear transfer model

No
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ECC as durable overlays and repair layers

Engineered Cementitious Composites (ECC)
V.C. Li et al. 1992~V.C. Li et al. 1992~

cementitious matrix + short random fibers
conscious micromechanics-based design of material 
composition … Performance Driven Design Approach

high performance with low fiber content (~2%)



CMME Lab. Yonsei Univ.

High performance cementitious composites

cementitious matrix + fibers

multiple cracking

high overall ductility in
tension and shear

with ease of processing 
and variability of shaping
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Characteristic of ECC behavior

Strain hardening

Multiple cracking
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33--d homogenized crack modeld homogenized crack model

3-D formulation of homogenized crack model

• Mixture rule (R.E.V)
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If  t≪ H ,  
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• Structural relationship
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• Structural relationship of (tensile) crack
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• Total strain relationship
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• Homogenized constitutive equation
jσσσ i

i
i µµ +=
iσ≈

εSD ][][ 1=
εDσ eq ][= ][][][ 1SDDeq =

Remark
Crack width, t, is removed in the final constitutive equation only expressed 
with μ . This is a solution for the mesh sensitivity problem without the 
introduction of additional length scale such as a characteristic length.
→ Regularization of the continuum model
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Constitutive equation for crack

Compression
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Failure criteria and softening curve (compression)Failure criteria and softening curve (compression)

Drucker-Prager type
0),(21 =−+= pkJIF εσα

Hardening and softening function
1) Song and Na (1997)
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2) Song et al (2003), Farahat et al.(1995) 
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3)  Barcelona model

k(εp) (J. Lubliner, 1996)
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k(Wp) (Modified Barcelona Model, MBM)
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Failure criteria and softening function (tension)Failure criteria and softening function (tension)

Failure criterial (Gopalaratnam and Shah, 1985)
)(1 ⋅−= kF σ

Hardening and softening function
1) Gopalaratnam and Shah (1985)
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유한유한 요소요소 해석해석 흐름도흐름도
Start

INPUT
Input data-geometry, boundry
condition, material properties, etc

Load3D
Evaluates equivalent nodal forces

INCREM
Increments applied loads

STIF3D
Calculate element stiffness for
elastic and elasto-plastic behavior

REACT
Calculate displacement and reactions

RESID3B
Compute residual stress,
backward Euler 
integration scheme

CONVER
Check if solution has converged

OUTERS
Print results for this load increment

End

L
O
A
D
 I
N
C
R
E
M
E
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T
 L
O
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P

IT
E
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A
T
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N
 L
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P

NO

YES

INVAR
Evaluates invariant stress

YLD3D and FLOWPT
Determine flow vector, a,d, etc

연화함수변경

손상함수도입



CMME Lab. Yonsei Univ.

Hardening and softening curve for concrete and ECC (tension)Hardening and softening curve for concrete and ECC (tension)

J. Lubliner (1996)
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Result for 2% polyetylane fiber contained ECC
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polyetylane fiber : 0.75% , 1% , 1.25%
Experimental result ((TetsushiTetsushi Kanda, 1998)Kanda, 1998)
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0.75% ECC
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1% ECC
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1.25% ECC
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Mesh sensitivity check on softening behavior
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Comparison with experimental result
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Mesh sensitivity check for tension
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Tension failure with damage
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2 . 5 d
d/
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d
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Flexural failure
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• 2977 nodes
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Results
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RC panel of simulating RCCV wall subjected to biaxial tensionRC panel of simulating RCCV wall subjected to biaxial tension

Modeling as shell elementModeling as shell element

Specification < HICT and KAERI, 2001 >
Compressive strength of concrete (σc) : 41.9MPa

Tensile strength of concrete (σt) : 2.87MPa

Modulus of elasticity of concrete (Ec) : 23828MPa

Yield strength of reinforcement (σy) : 410MPa

Modulus of elasticity of reinforcement (Es) : 205744MPa
Layered shell elementLayered shell element
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FEM MESH and Boundary conditionFEM MESH and Boundary condition

RC panel is discretized

as 10 x 10 mesh
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StressStress--strain curve of strain curve of rebarsrebars

Hoop direction

Meridional direction

Bottom of RC panelTop of RC panel
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StressStress--strain curve of strain curve of rebarsrebars

Hoop direction

Meridional direction

Bottom of RC panelTop of RC panel



CMME Lab. Yonsei Univ.

StressStress--strain curve of strain curve of rebarsrebars

Hoop direction

Meridional direction

Bottom of RC panelTop of RC panel
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Crack patterns of RC panelCrack patterns of RC panel

Top of RC panel by experiment Top of RC panel by volume control analysis

Bottom of RC panel by experiment Bottom of RC panel by volume control analysis
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Deformed shape of RC panelDeformed shape of RC panel

Hoop dir. displacement. at 1Hoop dir. displacement. at 1stst crack occurrencecrack occurrence MeridionalMeridional dir. displacement at 1dir. displacement at 1stst crack occurrencecrack occurrence

Hoop dir. displacement. at rebar yieldingHoop dir. displacement. at rebar yielding MeridionalMeridional dir. displacement at rebar yieldingdir. displacement at rebar yielding
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RCCV subjected to internal pressureRCCV subjected to internal pressure

Specification < SNL, 2001 >

Modeling with or without considering foundationModeling with or without considering foundation

Compressive strength of concrete (σc) : 46.0MPa

Tensile strength of concrete (σt) : 3.45MPa

Modulus of elasticity of concrete (Ec) : 33,100MPa

Poisson’s ratio of concrete (νc) : 0.20

Yield strength of reinforcement (σy) : 450.0MPa

Modulus of elasticity of reinforcement (Es) : 214,000MPa

Poisson’s ratio of reinforcement (νs) : 0.30

Layered shell elementLayered shell element
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Global behaviorsGlobal behaviors

Radial displacement Radial displacement –– Pressure relationship at midPressure relationship at mid--heightheight

Vertical displacement Vertical displacement –– Pressure relationship at springPressure relationship at spring--lineline
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Crack patterns of RCCV Crack patterns of RCCV 

1.0Pd (0.31MPa)

2.0Pd (0.62MPa)

3.0Pd (0.93MPa)
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Deformed shape of RCCVDeformed shape of RCCV

1.0Pd (0.31MPa) 2.0Pd (0.62MPa)

Ultimate pressure3.0Pd (0.93MPa)
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RC tank subjected to reversed cyclic loadingRC tank subjected to reversed cyclic loading

< Harada et al., 2001 >
Compressive strength of concrete (σc) : 28.0MPa

Tensile strength of concrete (σt) : 2.20MPa

Modulus of elasticity of concrete (Ec) : 22,600MPa

Yield strength of reinforcement (σy) : 384.0MPa

Modulus of elasticity of reinforcement (Es) : 183,000MPa

Specification

Layered shell elementLayered shell elementModeling as shell elementModeling as shell element
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Relative horizontal displacement Relative horizontal displacement -- load curveload curve

Comparison experiment result with Comparison experiment result with 
pathpath--dependant volume control resultdependant volume control result

Comparison pathComparison path--dependant volume dependant volume 
control result with precontrol result with pre--test analysis resulttest analysis result
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Crack status of RC tankCrack status of RC tank

Multi-directional cracks occurrence 
due to reversed cyclic loading

Crack status of RC tank by experimentCrack status of RC tank by experiment

Crack status of RC tank by volume control analysisCrack status of RC tank by volume control analysis



CMME Lab. Yonsei Univ.

Deformed shape of RC tankDeformed shape of RC tank

Horizontal load = 3,037 Horizontal load = 3,037 kNkN

Horizontal load = Horizontal load = --2,200 2,200 kNkN
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RC slab subjected to outRC slab subjected to out--of plane cyclic loadingof plane cyclic loading

Specification < Irawan, 2001 >
Compressive strength of concrete (σc) : 37.0MPa

Tensile strength of concrete (σt) : 3.70MPa

Yield strength of reinforcement (σy) : 380.0MPa

Modulus of elasticity of reinforcement (Es) : 206,000MPa
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Central displacement Central displacement -- load curveload curve

Comparison existing volume control result Comparison existing volume control result 
with pathwith path--dependant volume control result dependant volume control result 
(IS1)(IS1)

Comparison existing volume control result Comparison existing volume control result 
with pathwith path--dependant volume control result dependant volume control result 
(IS2)(IS2)
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Analysis result according to number of layered shell elementAnalysis result according to number of layered shell element

Analysis result according to number of layered shell elementAnalysis result according to number of layered shell element
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Crack status of RC slabCrack status of RC slab

Specimen IS1 : vertical load = 193 Specimen IS1 : vertical load = 193 kNkN

Specimen IS2 : vertical load = 193 Specimen IS2 : vertical load = 193 kNkN
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Deformed shape of RC slabDeformed shape of RC slab

Specimen IS1 : vertical load = 178 Specimen IS1 : vertical load = 178 kNkN

Isotropic reinforcement arrangement Isotropic reinforcement arrangement 

Stiffness of IS1 > Stiffness of IS2Stiffness of IS1 > Stiffness of IS2
Due to reinforcement arrangement

Specimen IS2 : vertical load = 144 Specimen IS2 : vertical load = 144 kNkN
Due to reinforcement arrangement

Anisotropic reinforcement arrangement Anisotropic reinforcement arrangement 
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RC box culvert subjected to cyclic loadingRC box culvert subjected to cyclic loading

Specification < Irawan, 1995 >
Compressive strength of concrete (σc) : 50.0MPa

Yield strength of reinforcement (σy) : 500.0MPa

Modeling with and without considering haunchModeling with and without considering haunch

Layered shell elementLayered shell element
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LoadLoad--deflection curve of RC box culvertdeflection curve of RC box culvert

Static failure load : 48 Static failure load : 48 tonftonf Model of considering without considering haunchModel of considering without considering haunch

Model of considering with haunch Model of considering with haunch 
is reinforced concrete layeris reinforced concrete layer

Model of considering with haunch Model of considering with haunch 
is plain concrete layeris plain concrete layer
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Crack status of RC box culvertCrack status of RC box culvert

Wall of RC box culvertWall of RC box culvert

Top slab and wall of RC box culvertTop slab and wall of RC box culvert
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Deformed shape of RC box culvertDeformed shape of RC box culvert

Model of considering without haunchModel of considering without haunch

Model of considering with haunch Model of considering with haunch 
is plain concrete layer

Model of considering with haunch Model of considering with haunch 
is reinforced concrete layer is plain concrete layeris reinforced concrete layer
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RC hollow column under lateral loading

Concrete Reinforcement
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P

Stress-strain curve of concrete and reinforcing steel

(Masukawa et al., 1997)

Modeling as shell element

(a) Steel

(b) Concrete
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Load-displacement curve
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strength reinforcement”, Proceedings of JCI, Vol. 19, No. 2, pp. 557-564, 1997
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ContourContour

(a) At final compression (a) At final tension
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Crack patternsCrack patterns

A B

C D
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Analysis of 1/4 prestressed concrete containment 
vessel(PCCV) 

Sandia National Laboratories, Albuquerque, New Mexico,2000
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Tendon layout Unbonded tendon
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Characteristics of Model Test and AnalysisCharacteristics of Model Test and Analysis

The first model test to satisfy material 
and design details of design code (ASME 
Sec. III, Div.2)

• limit state test (LST) and structural 
failure mechanism test (SFMT)

◆ Large scale model including openings 
and steel liners

3D finite element modeling including 
tendons, rebars and openings using 
DIANA 
◆ Pre-test analysis 
◆ Post-test analysis

Introduction of volume control 
technique

1/4 Scale PCCVPCCV model
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Model Tests (Failure Test due to Internal Pressure)Model Tests (Failure Test due to Internal Pressure)

Limit state test (LST)Limit state test (LST) Structural failure mechanism test 
(SFMT)
Structural failure mechanism test 
(SFMT)

Pressurized by nitrogen gas

Structural soundness test & leakage 
test

1.5Pd, 2.0Pd, 2.5Pd and 3.3Pd

(Pd = 0.39 MPa )

Functional failure due to leakage 
was occurred at 3.3Pd due to tearing 
of liner

Pressurized by water
Structural failure at 3.6Pd
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Structural Failure Mechanism Test (SFMT)



CMME Lab. Yonsei Univ.

LST test result LST test result 

-Hoop directional deformations govern PCCV behaviors
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Test result and comparison with the analytical resultsTest result and comparison with the analytical results

Deformation profile at 135˚ section (magnified ×100)Deformation profile at 135˚ section (magnified ×100)

For higher pressure, 
analysis generally predicts 
larger deformations than 
those by the test

The analysis comparably 
well predicts the global 
behavior
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LST resultsLST results

900Final

3.3

1003.1

difficult to increase pressure3.0

liner strain: 2%
evidence of liner tear

1.62.5

no evidence of distress2.0

no leakage0.51.5

ObservationLeakage Rate*Pressure/Pd

* volume change (%) per day (V/Day)
**Permissible leakage rate for design pressure:

(pressurized water reactor with steel liner) 0.1% V/Day
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ComparisonComparison

DeformationsDeformations

Experiment(SNL) 
Load control

Experiment(SNL) 
Load control

Radial displ. at midheight Vertical displ. at dome apex

More stable solution is possible with volume control techniqueMore stable solution is possible with volume control technique
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Rebar stains Rebar stains 

Experiment(SNL) 

Load control

Experiment(SNL) 
Load control

Outer rebar hoop strain at dome 45˚Outer rebar hoop strain at midheight
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Conclusions and future workConclusions and future work

For the failure analysis of RC shell structures using FEM, both 

material and structural instability problems can be solved 

effectively by the homogenized crack model and the volume 

control technique. 

In-plane constitutive laws of cracked concrete and modified 

Barcelona model can be useful for the modeling of the layered 

RC shell element and ECC repaired layers.

Failure analysis or performance evaluation of the deteriorated 

RC shell structures repaired with the ECC layers is now under 

carried out. 
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Thank you for Thank you for 
your kind attention!your kind attention!

song@song@yonseiyonsei.ac..ac.krkr
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