Failure Analysis of RC Structures using Volume Control Technique

-COE Intensive Course-

Feb. 3, 2005

Hokkaido University, Sapporo, Japan

Ha-Won Song

School of Civil and Environmental Engineering

Concrete Materials, Mechanics and Engineering Lab. YONSEI UNIVERSITY

Outline

Introduction

Characteristic of failure in concrete structures

Homogenized crack model

Volume control method

Modeling for cracked RC and ECC

Constitutive equations of RC/ Layered shell element

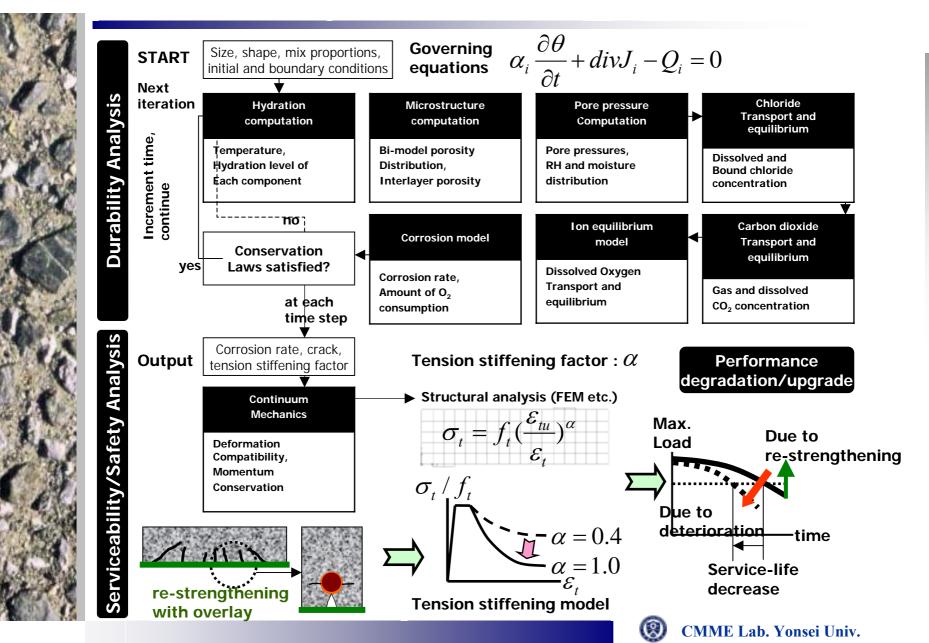
Modeling of ECC as re-strengthening material

Analysis results and comparison

RCCV subjected to internal pressure RC tank , RC slab, and RC box culvert subjected to various loading RC hollow column subjected to lateral loading Verification with PCCV

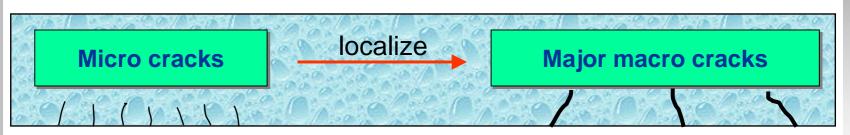
Conclusion and future work

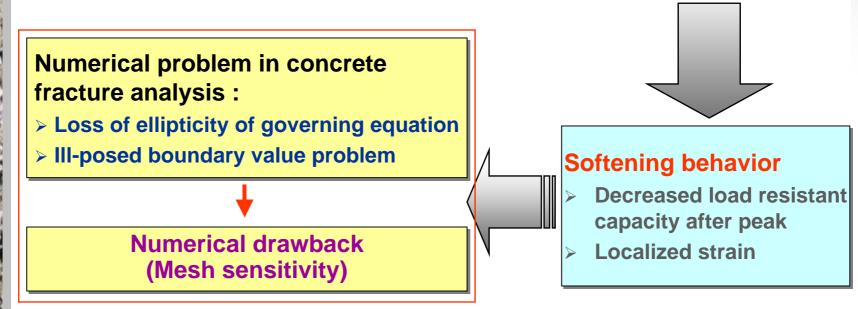
Performance of deteriorated/repaired RC structures ?



Characteristics of concrete fracture and analysis

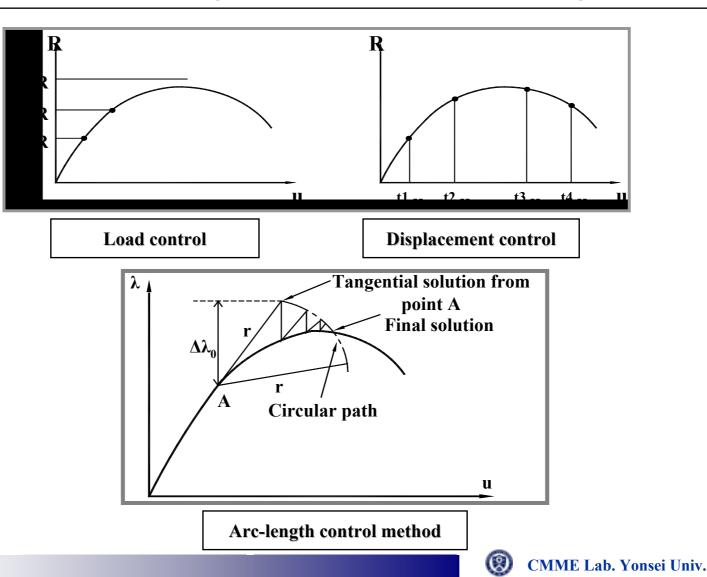
Material instability

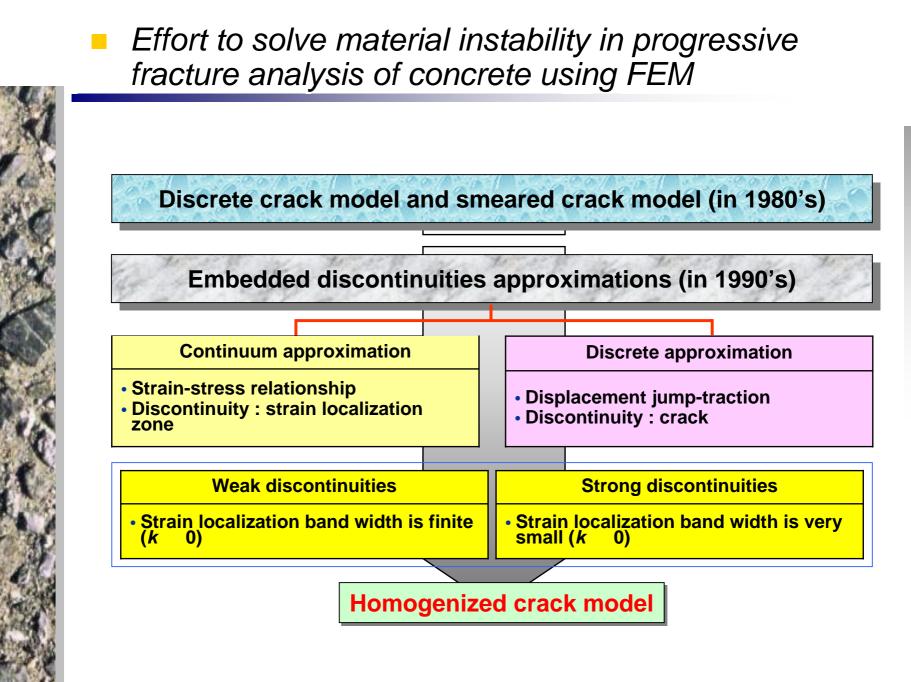




Structural instability

Sources of Non-linearity ; Material, Geometrical, Boundary and Contact





Effort to solve structural instability in progressive failure of concrete shell structures using FEM

Failure analysis of RC shell structures subjected to various loadings

Load Control Method : difficulty to obtain post-peak ultimate behavior of RC structures

Displacement Control Method : difficulty to select a representative point for displacement control in 3D

Layered shell utilizing in-plane constitutive models of RC

 Remove the drawback of load control method

 overcome the limitation for displacement control method

Volume Control Method

Volume Control Method with Pressure Node

 Pressure Node : the uniform change of applied pressure on the shell element (Δp) (Song and Tassoulas, IJNME, 1993)

$$\Delta V = \int_{b^{e}} \mathbf{n}^{T} \cdot \Delta \mathbf{u} \, \mathrm{d} b^{e} = \left(\int_{b^{e}} \mathbf{n}^{T} \cdot N \, \mathrm{d} b^{e} \right) \Delta U$$

$$\int_{b^{e}} N^{T} (\mathbf{t} + \Delta \mathbf{t}) \, \mathrm{d} b^{e} = -(\mathbf{p} + \Delta \mathbf{p}) \int_{b^{e}} N^{T} \mathbf{n} \, \mathrm{d} b$$

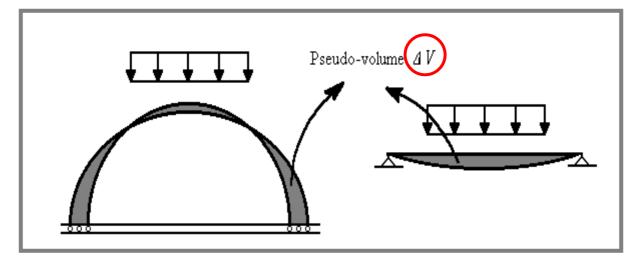
$$\mathbf{K}_{e} \, \Delta U = -(\mathbf{p} + \Delta \mathbf{p}) \int_{b^{e}} N^{T} \mathbf{n} \, \mathrm{d} b^{e} - \mathbf{F}_{e}$$

$$\mathbf{K}_{e} \, \int_{b^{e}} N^{T} \mathbf{n} \, \mathrm{d} b^{e} = 0$$

$$\mathbf{M}_{b^{e}} = \left[\begin{array}{c} \mathbf{p} \int_{b^{e}} N^{T} \mathbf{n} \, \mathrm{d} b^{e} - \mathbf{F}_{e} \\ \Delta V \end{array} \right]$$

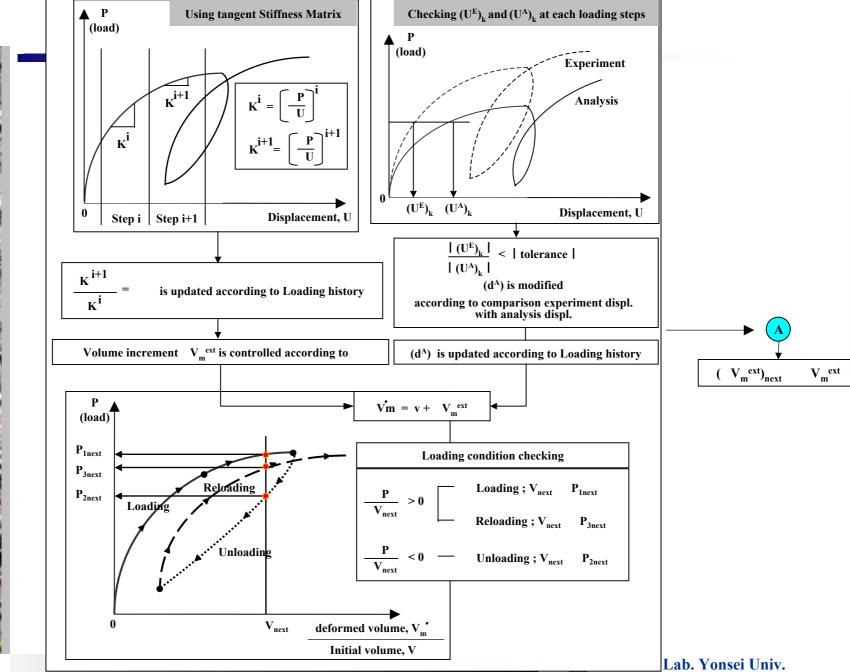
Path dependant pseudo-volume control technique

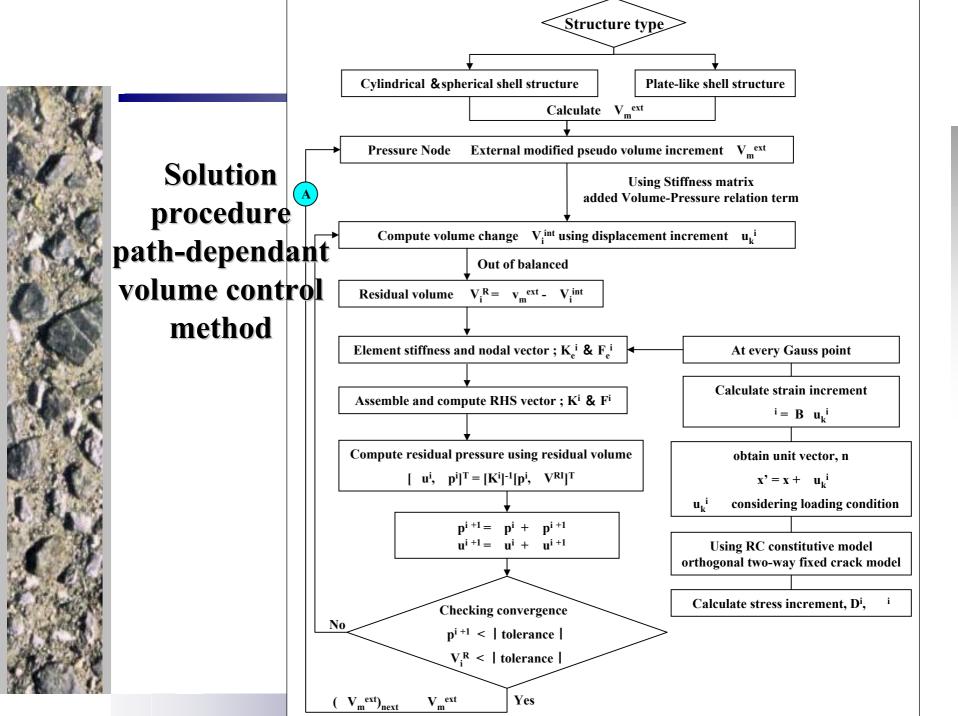
Pseudo Volume (Song et. al, J. Str. Eng. 2002)



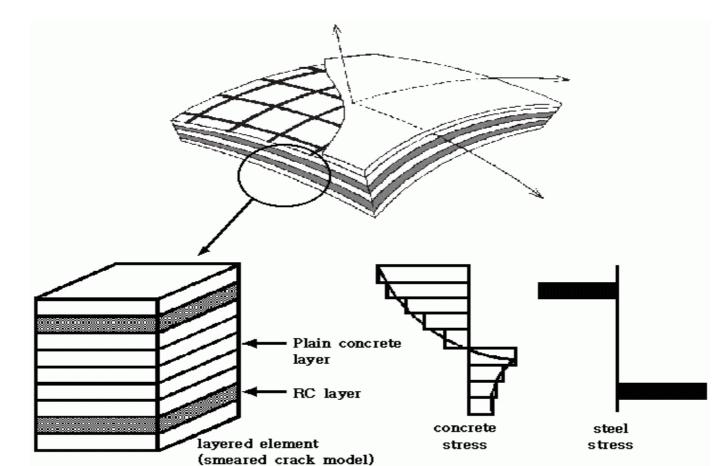
Path-dependent Volume (Song et. al, Nuclear Eng. and Design, 2003)

Algorithm for path dependant volume control technique





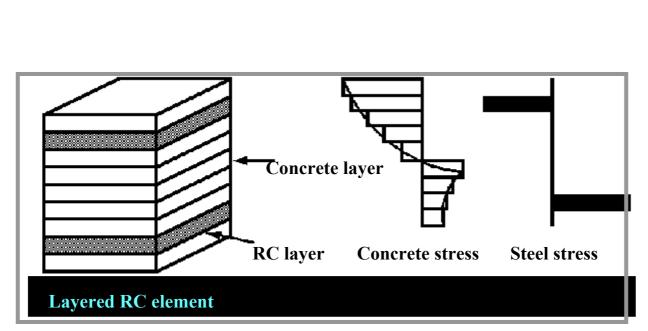
Layered shell element



• Degenerated, isoparametric, serendipity, quadratic shell element with drilling degree of freedom

- Geometrical nonlinearity is considered by adopting total Lagrangian formulation
- In plane constitutive laws applied to each layer of element consists of RC layers and PL layers

Constitutive law for each layer

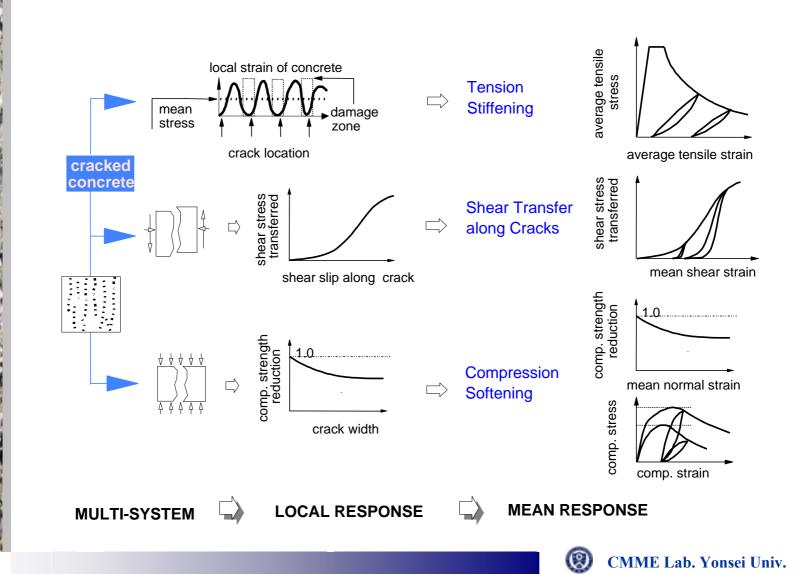


- Concrete under compression : Elasto-plastic fracture model (Maekawa et. al)
- Cracked concrete : Smeared fixed crack model
- Concrete under shear : Crack density model (Maekawa and Li)

Shear locking + Membrane locking

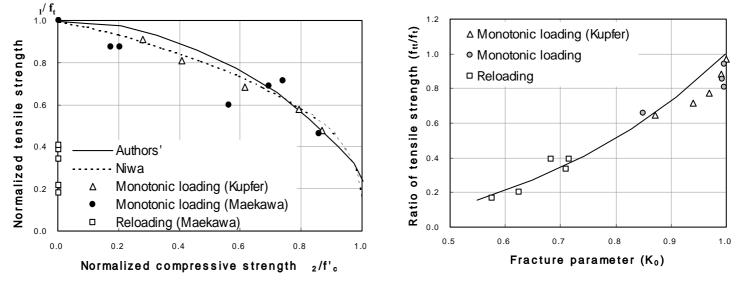
Reduced integration (2 x 2 Gaussian quadrature)

In-plane constitutive models of cracked concrete



Cracking criteria of concrete

Cracking is affected by past loading history.



< Failure envelope in tension-compression domain >

< Normalized tensile strength and fracture parameter >

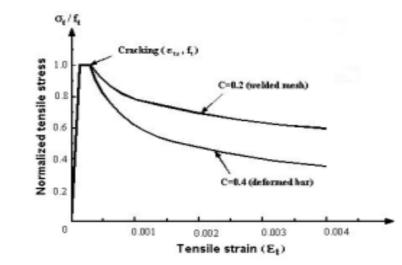
By taking account influence of **continuum fracture** in past compression, cracking criterion can be defined in the space of biaxial principal stresses

$$\frac{\sigma_1}{(R_f \cdot f_t)} = 1.0$$
Compression-tension domain
$$\frac{\sigma_1}{(R_f \cdot f_t)} = 1.0$$
Where, $_1, _2$: principal stress ($_1 > _2$)
 f_t : uniaxial tensile strength
$$R_f$$
: tensile strength reduction factor

Tension stiffening model

Concrete model under tensile stress is unrelated to spacing of cracks, direction of reinforcing bars and reinforcement ration.

Tension stiffening effect is known to increase overall stiffness of RC in tension compared with that of single reinforcing bar.



< Tension stiffening model for deformed bars (c=0.4) and welded meshes (c=0.2) >

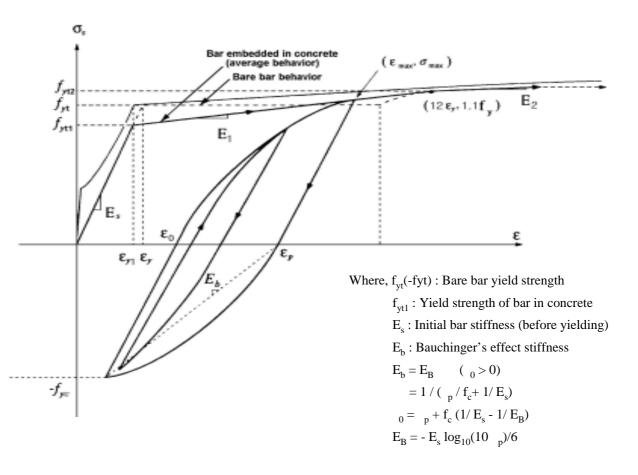
$$\sigma_t = f_t \left(\frac{\varepsilon_{tu}}{\varepsilon_t} \right)^c$$

Where, t: average tensile stress, t: average tensile strain

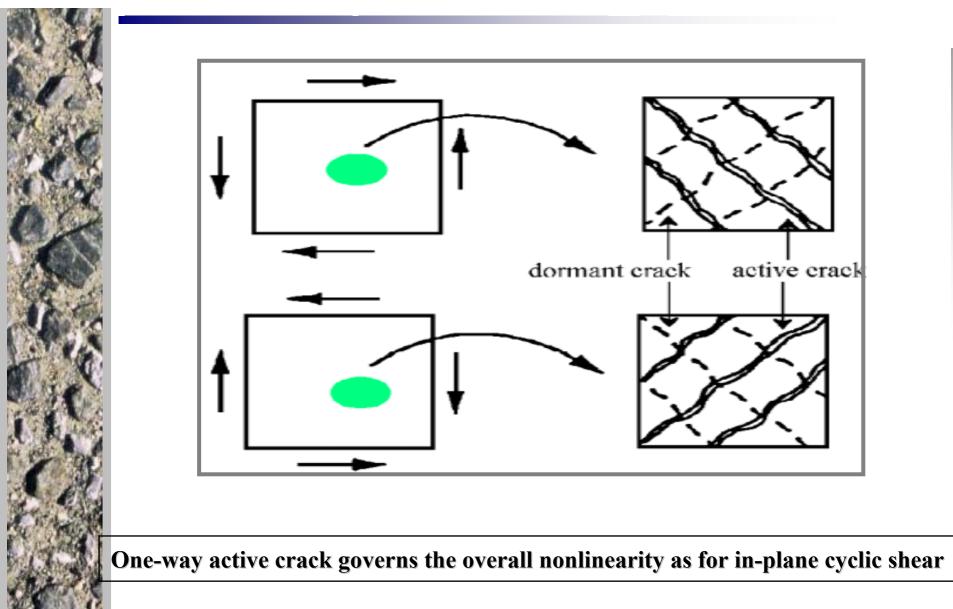
- f_t : uniaxial tensile strength, t_u : cracking strain
- c : stiffening parameter

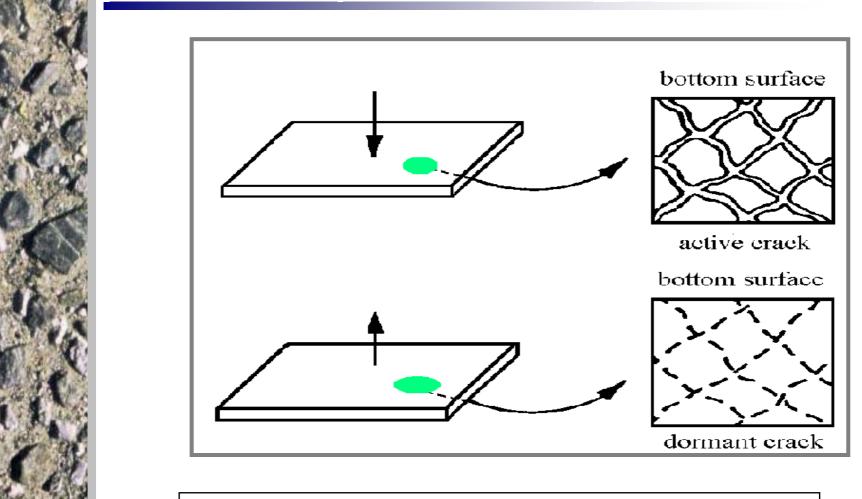
Steel model

Reinforcing bar model is based on the assumed cosine distribution of bar stress and concrete tension stiffening.



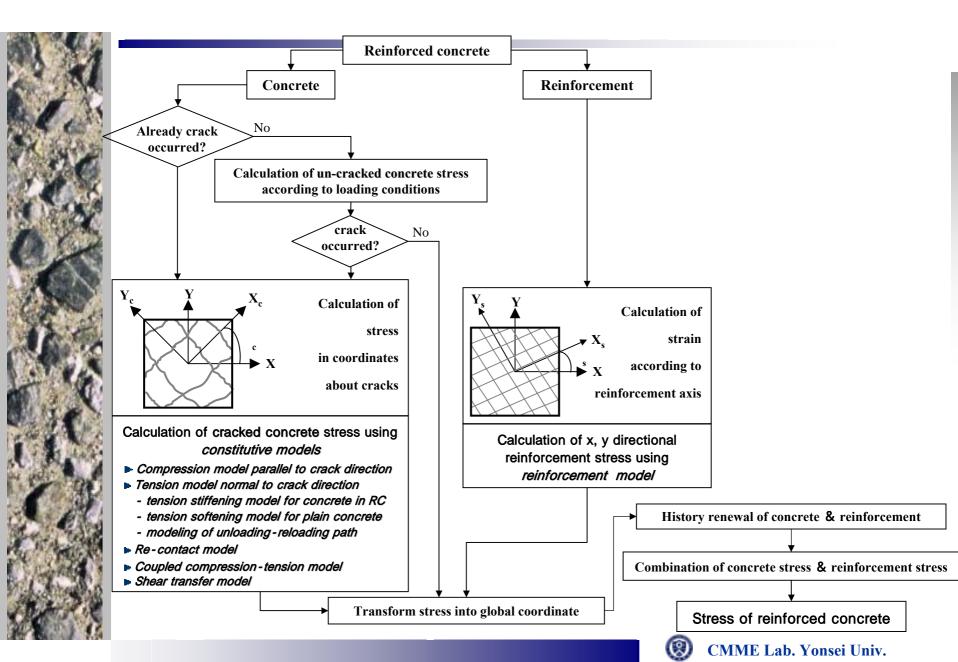
Multi-directional smeared crack approach





Two-way active cracks may control the overall nonlinearity as for out of plane cyclic action

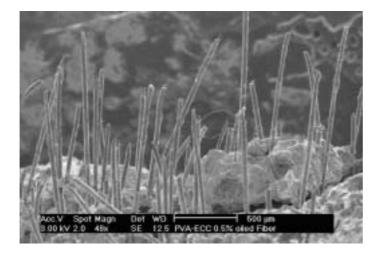
Orthogonal two-way fixed crack model



ECC as durable overlays and repair layers

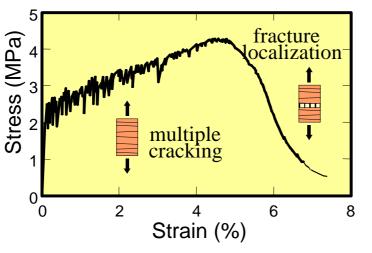
Engineered_Cementitious Composites (ECC)

- V.C. Li et al. 1992~
 ➤ cementitious matrix + short random fibers
- Conscious micromechanics-based design of material composition ... Performance Driven Design Approach
- ≻high performance with low fiber content (~2%)



High performance cementitious composites

➤multiple cracking



high overall ductility in tension and shear

with ease of processing and variability of shaping

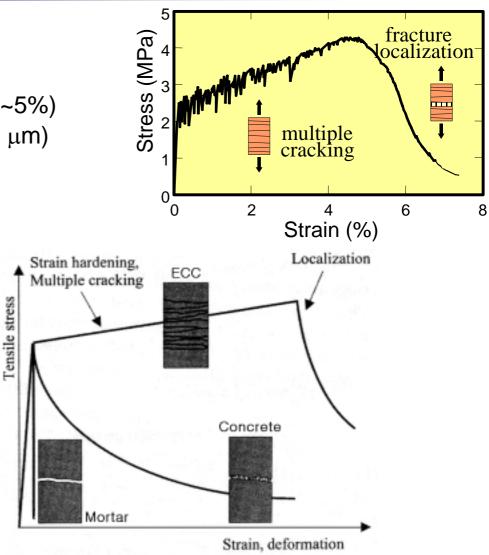
➤ damage tolerance, durability, ...

Characteristic of ECC behavior

mechanical properties:

- high tensile strain capacity (~5%)
- small crack width O(10~100 μ m)

- Strain hardening
- Multiple cracking
- Localized failure



3-d homogenized crack model

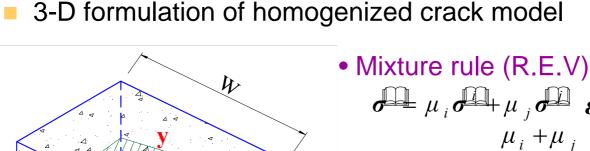
 $\sigma_{i}^{(1)}, \epsilon_{i}^{(2)}$: concrete

 σ_{i} , ε_{i} : crack

X

Z

(REV)



Η

- $\boldsymbol{\sigma}^{\mu} = \mu_{i} \boldsymbol{\sigma}^{\mu} + \mu_{j} \boldsymbol{\sigma}^{\mu} \boldsymbol{\varepsilon}^{\mu} \boldsymbol{\varepsilon$ $\mu_{i} + \mu_{j} = 1$
- Equilibrium & compatibility $\sigma_{yy}^{\mu} = \sigma_{yy}^{\mu} = \sigma_{yy}^{\mu} = \varepsilon_{yz}^{\mu} = \varepsilon_{z}^{\mu} = \varepsilon_{z}^$
- Velocity discontinuity at crack surface $\mathbf{g} = \{ \mathbf{g}, \mathbf{g}, \mathbf{g}, \mathbf{g}^T \mid \mathbf{\delta} \} \mathbf{\sigma}^{\mathbf{\mu}} = [\mathbf{K}] \mathbf{g}$ **Representative elementary volume** $\begin{bmatrix} \boldsymbol{\delta} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$ $\boldsymbol{\sigma}_{j}^{e}, \ \boldsymbol{\varepsilon}_{j}^{e}: \ crack$ $\boldsymbol{\sigma}_{k}^{e}, \ \boldsymbol{\varepsilon}_{j}^{e}: \ concrete \ with \ crack$ $\boldsymbol{[K]} = \begin{bmatrix} K_{11} & K_{12} & K_{13} \\ K_{21} & K_{22} & K_{23} \\ K_{31} & K_{32} & K_{33} \end{bmatrix} \quad \boldsymbol{[K]} = \boldsymbol{[K^{e}]} = \begin{bmatrix} K_{N} & 0 & 0 \\ 0 & K_{S1} & 0 \\ 0 & 0 & K_{S2} \end{bmatrix}$

If t H,

$$\mu_{i} = \frac{BW(H - t)}{HBW} \cong 1$$

$$\mu_{j} = \frac{BWt}{HBW} \cong \frac{t}{H}$$

$$\frac{1}{t} \underbrace{\boldsymbol{\mathcal{G}}}_{\boldsymbol{\mathcal{H}}} [\boldsymbol{\delta}] \boldsymbol{\mathcal{E}}^{\boldsymbol{\mathcal{G}}}$$
averaged crack strain
Let $\boldsymbol{\mu}$ be the ratio of the crack area and REV., i.e. $(\boldsymbol{\mu} := \frac{1}{H})$
Then, $\boldsymbol{\mathcal{E}}^{\boldsymbol{\mathcal{G}}} = \mu_{i} \boldsymbol{\mathcal{E}}^{\boldsymbol{\mathcal{G}}} + \mu_{j} \boldsymbol{\mathcal{E}}^{\boldsymbol{\mathcal{G}}}$ can be written as
 $[\boldsymbol{\delta}] \boldsymbol{\mathcal{E}}^{\boldsymbol{\mathcal{G}}} \mu_{i} [\boldsymbol{\delta}] \boldsymbol{\mathcal{E}}^{\boldsymbol{\mathcal{G}}} + \mu_{j} [\boldsymbol{\delta}] \boldsymbol{\mathcal{E}}^{\boldsymbol{\mathcal{G}}}$

$$= 1 \cdot [\boldsymbol{\delta}] \boldsymbol{\mathcal{E}}^{\boldsymbol{\mathcal{G}}} + \frac{t}{H} \cdot \frac{1}{t} \underbrace{\boldsymbol{\mathcal{G}}}_{\boldsymbol{\mathcal{G}}}$$

$$= [\boldsymbol{\delta}] \boldsymbol{\mathcal{E}}^{\boldsymbol{\mathcal{G}}} + \mu \underbrace{\boldsymbol{\mathcal{G}}}_{\boldsymbol{\mathcal{G}}}$$

 Structural relationship $\boldsymbol{\sigma}^{\mu} = [\boldsymbol{D}]\boldsymbol{\varepsilon}^{\mu} \qquad \boldsymbol{\sigma}^{\mu} = \mu_{i} \boldsymbol{\sigma}^{\mu} + \mu_{i} \boldsymbol{\sigma}^{\mu}$ $[\delta] \varepsilon = [\delta] \varepsilon + \mu \varepsilon$ $[\delta] \varepsilon^{\square} = [A] \varepsilon^{\square} [B] \varepsilon^{\square}$ $[A] = \begin{bmatrix} -\frac{D_{21}}{C_1} & \frac{-K_{11}}{\mu C_1} & \frac{-D_{23}}{C_1} & \frac{-D_{24}}{C_1} & \frac{-D_{25}}{C_1} & \frac{-D_{26}}{C_1} \\ \frac{-D_{41}}{C_2} & \frac{-D_{42}}{C_2} & \frac{-D_{43}}{C_2} & \frac{-K_{22}}{\mu C_2} & \frac{-D_{45}}{C_2} & \frac{-D_{46}}{C_2} \\ \frac{-D_{51}}{C_3} & \frac{-D_{52}}{C_3} & \frac{-D_{53}}{C_3} & \frac{-D_{54}}{C_3} & \frac{-K_{33}}{\mu C_3} & \frac{-D_{56}}{C_3} \end{bmatrix}$ $[\mathbf{B}] = \begin{bmatrix} 0 & \frac{K_{12} + \mu D_{24}}{C_1} & \frac{K_{13} + \mu D_{25}}{C_1} \\ \frac{K_{21} + \mu D_{42}}{C_2} & 0 & \frac{K_{23} + \mu D_{45}}{C_2} \\ \frac{K_{31} + \mu D_{52}}{C_3} & \frac{K_{32} + \mu D_{54}}{C_3} & 0 \end{bmatrix} \quad \begin{array}{c} C_1 = D_{22} + \frac{K_{11}}{\mu} \\ C_2 = D_{44} + \frac{K_{22}}{\mu} \\ C_3 = D_{55} + \frac{K_{33}}{\mu} \\ \end{array}$ () CMME Lab. Yonsei Univ.

• Structural relationship of (tensile) crack

 $[\delta] \varepsilon [\delta] \varepsilon [\mu] \varepsilon [\delta] \varepsilon [S] \varepsilon [S]$

 $\underbrace{\mathbf{s}}_{\mu}^{1}([\boldsymbol{\delta}] - [\boldsymbol{S}]) \boldsymbol{\boldsymbol{s}}_{\mu}^{1}$ Let $[\boldsymbol{S}_{2}] = \frac{1}{\mu}([\boldsymbol{\delta}] - [\boldsymbol{S}])$ $\underbrace{\mathbf{s}}_{\mu}^{1}[\boldsymbol{S}_{2}] \boldsymbol{\boldsymbol{s}}_{\mu}^{1}$

then

• Total strain relationship

$$[\boldsymbol{\delta}] \, \boldsymbol{\varepsilon}^{\square} = [\boldsymbol{S}] \, \boldsymbol{\varepsilon}^{\square}$$
$$[\boldsymbol{S}] = ([\boldsymbol{I}] + \frac{1}{\mu} [\boldsymbol{B}])^{-1} ([\boldsymbol{A}] + \frac{1}{\mu} [\boldsymbol{B}] [\boldsymbol{\delta}])$$

$$\boldsymbol{\varepsilon}^{[i]} = [\boldsymbol{S}_1] \boldsymbol{\varepsilon}^{[i]}$$

$$[\boldsymbol{S}_{1}] = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ S_{11} & S_{12} & S_{13} & S_{14} & S_{15} & S_{16} \\ 0 & 0 & 1 & 0 & 0 & 0 \\ S_{21} & S_{22} & S_{23} & S_{24} & S_{25} & S_{26} \\ S_{31} & S_{32} & S_{33} & S_{34} & S_{35} & S_{36} \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

• Homogenized constitutive equation

$$\boldsymbol{\sigma}^{\mu} = \mu_{i} \boldsymbol{\sigma}^{\mu} + \mu_{i} \boldsymbol{\sigma}^{\mu}$$

$$\approx \boldsymbol{\sigma}^{\mu}$$

$$= [\boldsymbol{D}][\boldsymbol{S}_{1}] \boldsymbol{\varepsilon}^{\mu}$$

$$\boldsymbol{\sigma}^{\mu} = [\boldsymbol{D}^{eq}] \boldsymbol{\varepsilon}^{\mu}$$

 $[D^{eq}] = [D][S_1]$

Remark

Crack width, t, is removed in the final constitutive equation only expressed with μ . This is a solution for the mesh sensitivity problem without the introduction of additional length scale such as a characteristic length.

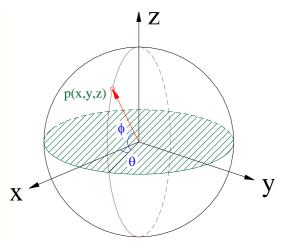
Regularization of the continuum model

Constitutive equation for crack

- Compression
- Bifurcation analysis for crack initiation

$$F(\boldsymbol{n}) = \det(n_i D^{eq}_{ijkl} n_l)$$

$$[\mathbf{K}] = \begin{bmatrix} K_N^{ep} & 0 & 0\\ 0 & K_{S1}^{ep} & 0\\ 0 & 0 & K_{S2}^{ep} \end{bmatrix}$$



Failure criteria and softening curve (compression)

- **Drucker-Prager type** $F = \alpha I_1 + \sqrt{J_2} - k(\overline{\sigma}, \overline{\varepsilon}^p) = 0$
- Hardening and softening function
 - 1) Song and Na (1997)

$$k(\overline{e}^{p},\overline{\sigma}) = \sigma_{0} + \overline{\sigma}\overline{e}^{p} + (\sigma_{\infty} - \sigma_{0})[1 - e^{-\beta\overline{e}}] - \sqrt{\frac{3}{2}}\alpha p$$

2) Song et al (2003), Farahat et al.(1995)

$$k(W^{p}) = k_{0}e^{-[(\beta W^{p})^{\gamma} - \xi]^{2}}$$

- 3) Barcelona model
 - k(^p) (J. Lubliner, 1996) $k(\varepsilon^{p}) = f_{N0}[(1 + a_{N})\exp(-b_{N}\varepsilon^{p}) - a_{N}\exp(-2b_{N}\varepsilon^{p})]$
 - k(W^p) (Modified Barcelona Model, MBM) $k(W^{p}) = f_{N0}[(1 + a_{N}) \exp(-b_{N}W^{p}) - a_{N} \exp(-2b_{N}W^{p})]$

Failure criteria and softening function (tension)

Failure criterial (Gopalaratnam and Shah, 1985)

$$F = \sigma_1 - k(\cdot)$$

Hardening and softening function

1) Gopalaratnam and Shah (1985)

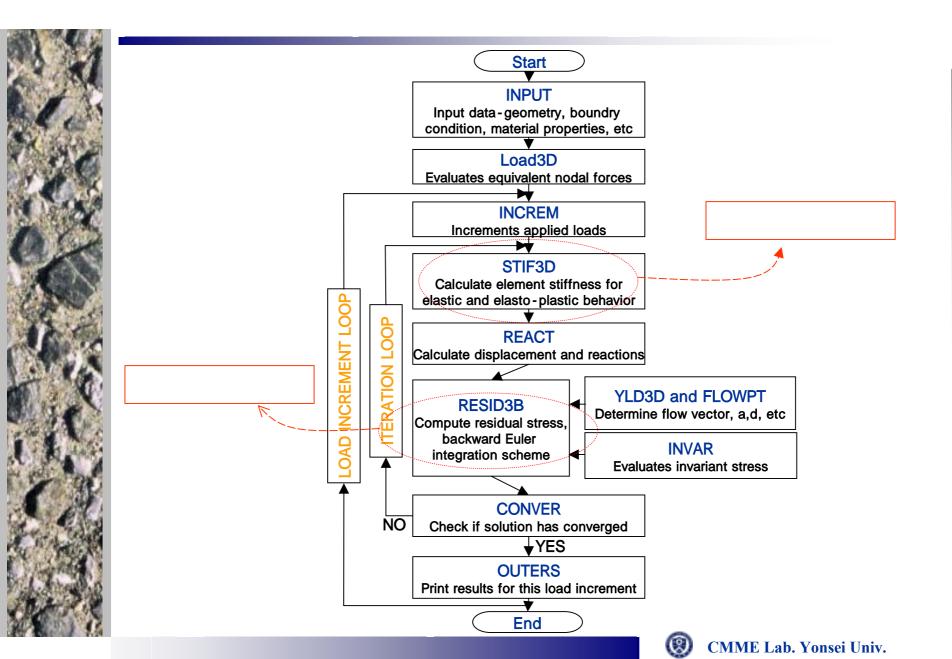
$$k(t) = f_t(e^{-\kappa t^{\lambda}})$$

- 2) Song et al. (2003) $k(g_{y}) = f_{t}(e^{-\kappa(\eta g_{y})^{\lambda}})$
- 3) Barcelona model
 - $k(\varepsilon^{p})$ (J. Lubliner, 1996)

$$k(\varepsilon^{p}) = f_{t0}[(1 + a_{t})\exp(-b_{t}\varepsilon^{p}) - a_{t}\exp(-2b_{t}\varepsilon^{p})]$$

 $k(\mathfrak{F}_{y})$ (MBM)

 $k(g_{y}) = f_{t0}[(1 + a_{t})\exp(-b_{t}'g_{y}) - a_{t}\exp(-2b_{t}'g_{y})]$

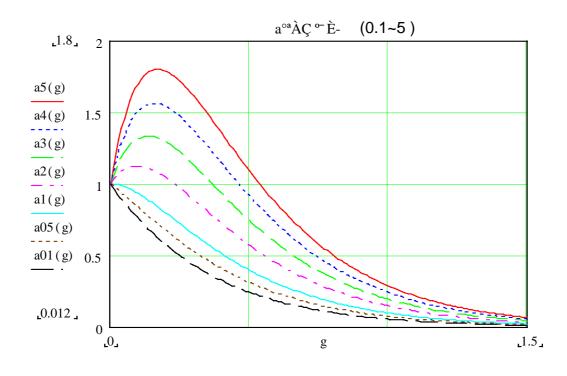


Hardening and softening curve for concrete and ECC (tension)

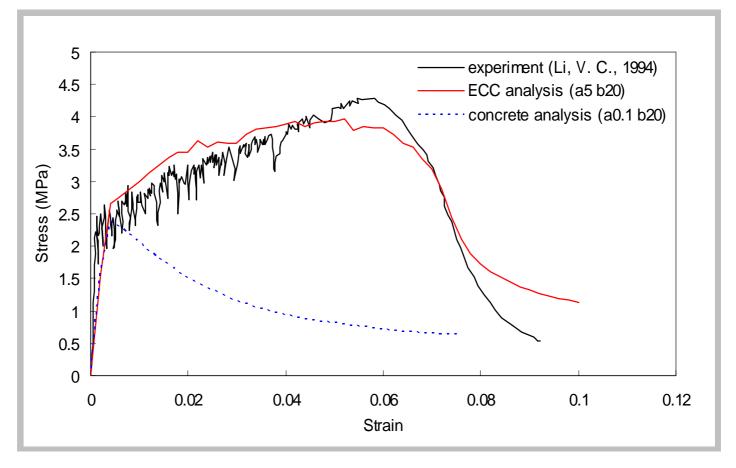
> J. Lubliner (1996)

$$k(g_{y}) = f_{t0}[(1 + a_{t})\exp(-b_{t}'g_{y}) - a_{t}\exp(-2b_{t}'g_{y})]$$

$$a_t < 1$$
 \longrightarrow Concrete
 $a_t > 1$ \longrightarrow ECC

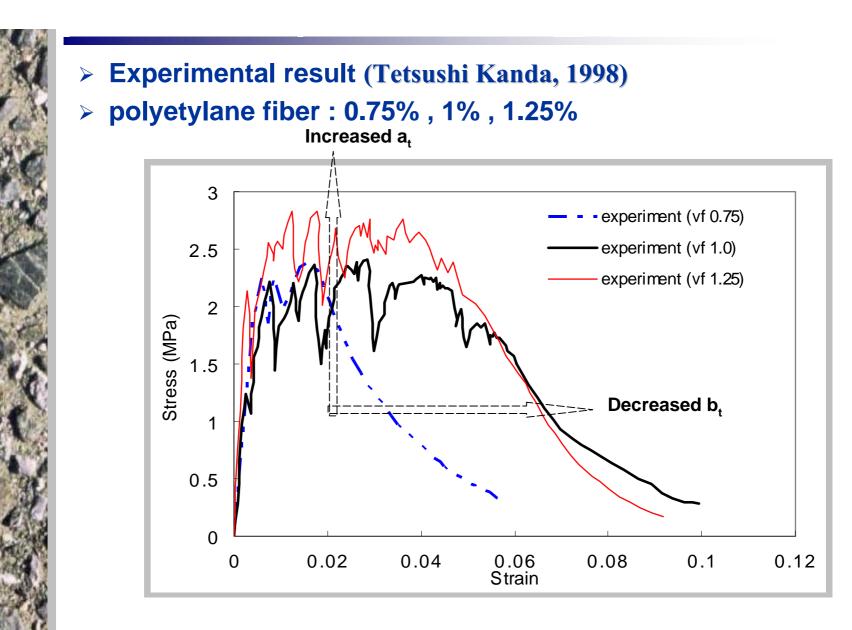


Result for 2% polyetylane fiber contained ECC

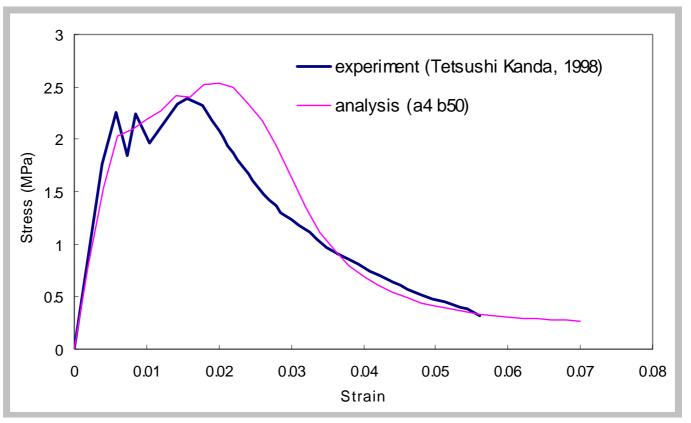


 $a_t = 0.1$: Concrete

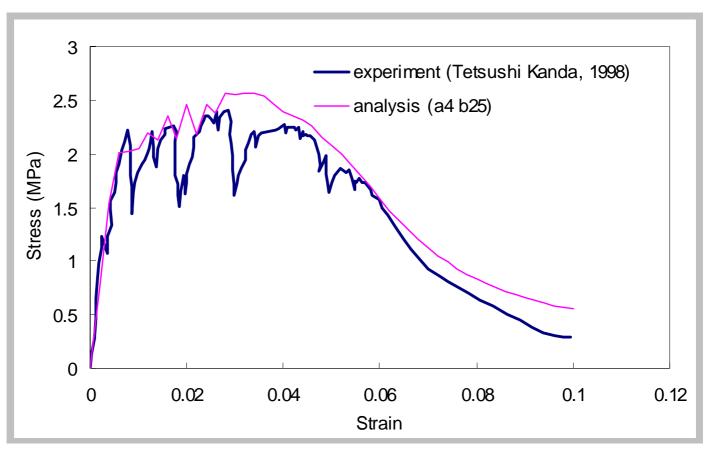
 $a_t = 5$: ECC



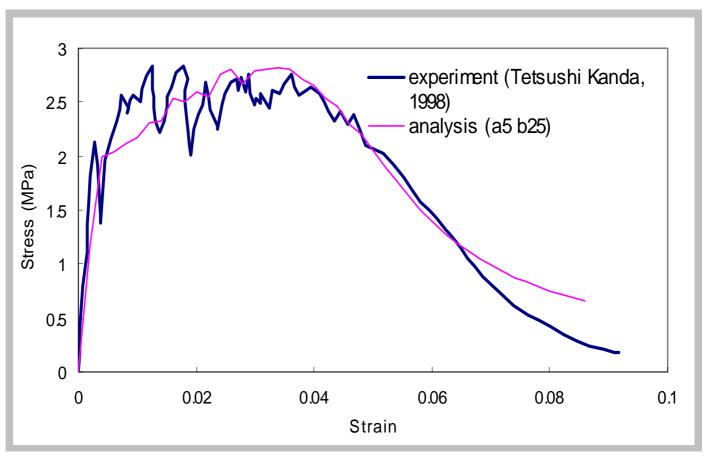
0.75% ECC



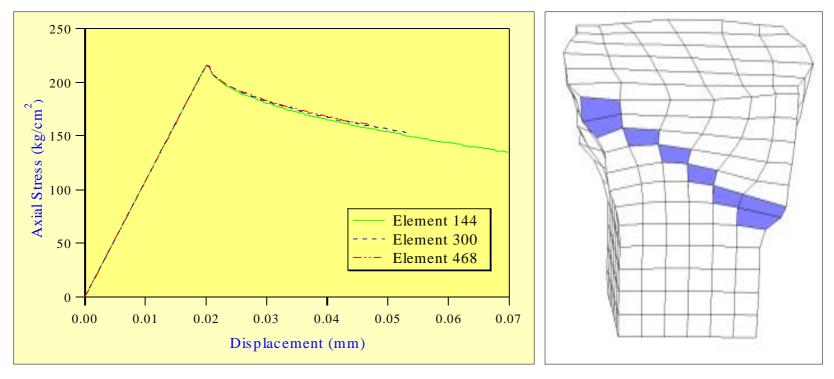
1% ECC



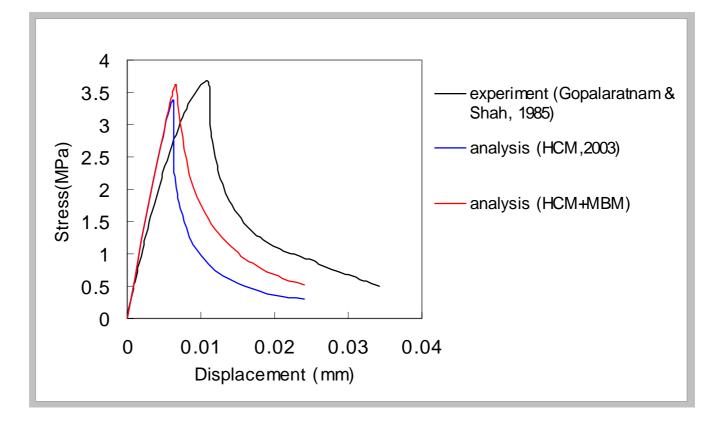
1.25% ECC



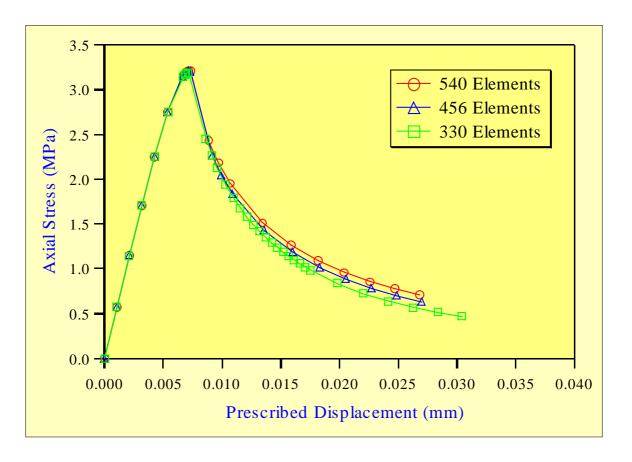
Mesh sensitivity check on softening behavior



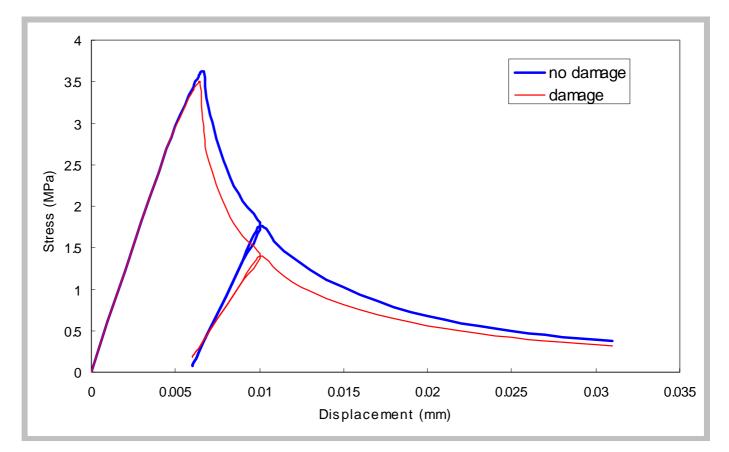
Comparison with experimental result

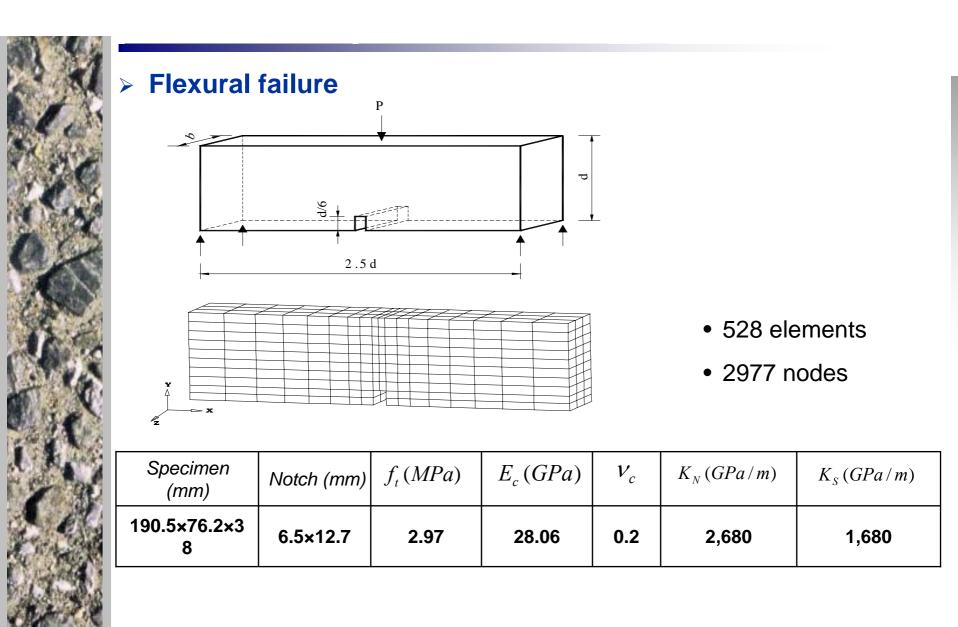


Mesh sensitivity check for tension

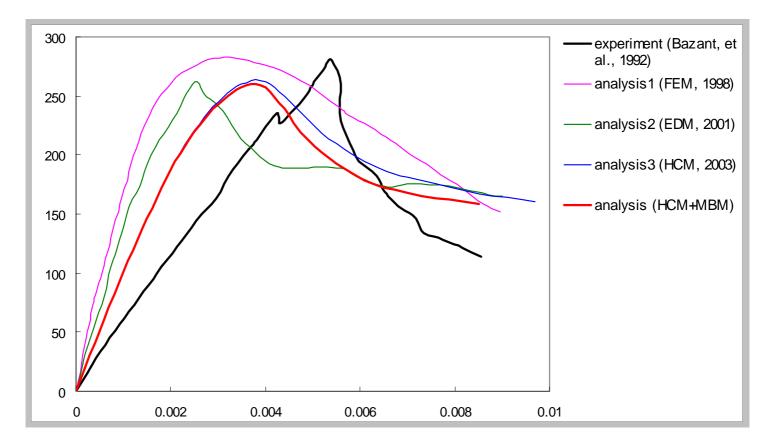


> Tension failure with damage

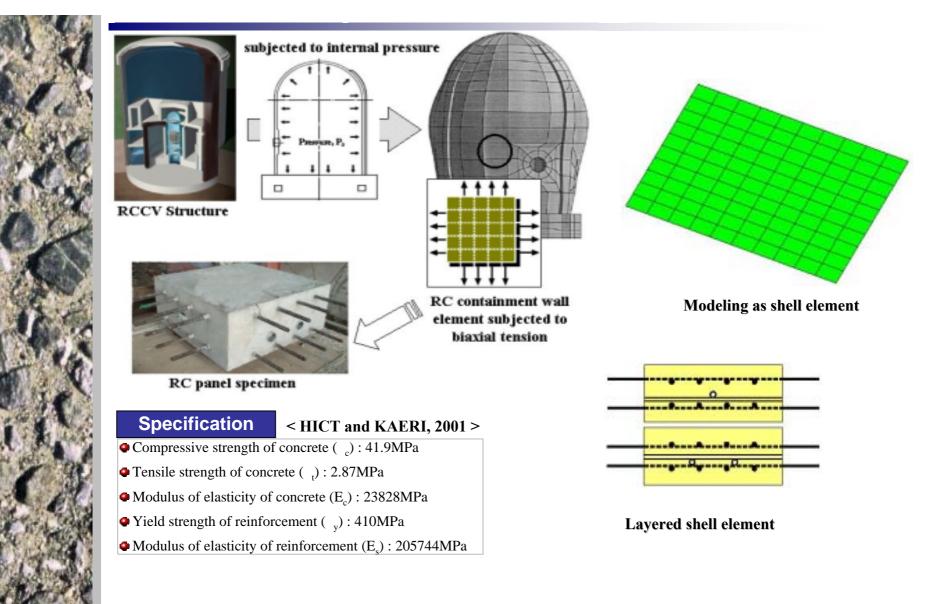




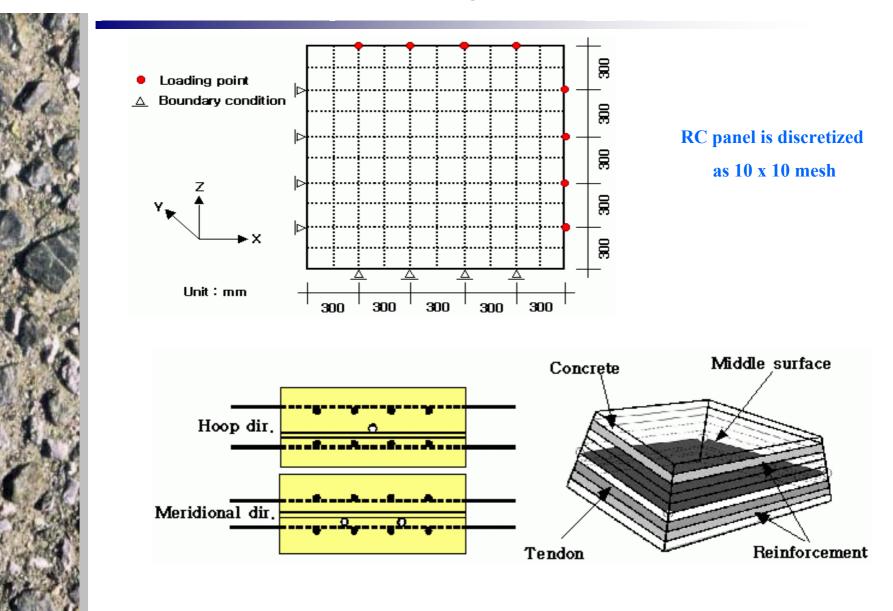
Results



RC panel of simulating RCCV wall subjected to biaxial tension



FEM MESH and Boundary condition



Stress-strain curve of rebars

500

400

300

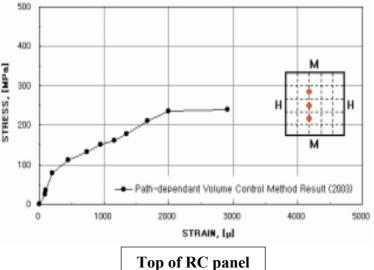
100

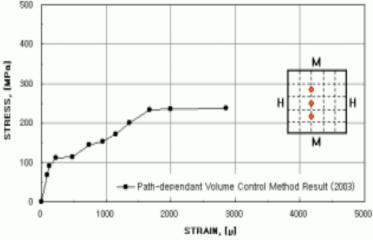
Ű.

[MPa]

STRESS, 200

Hoop direction 500 400 м STRESS, [MPa] 300 200 м 100 - Experiment (2001) -Experiment (2001) — Path-dependant Volume Control Method Result (2003) Path-dependant Volume Control Method Result (2003) 0 1000 2000 3000 4000 5000 0 0 1000 2000 3000 4000 STRAIN, [µ] STRAIN, [µ] **Meridional direction** 500





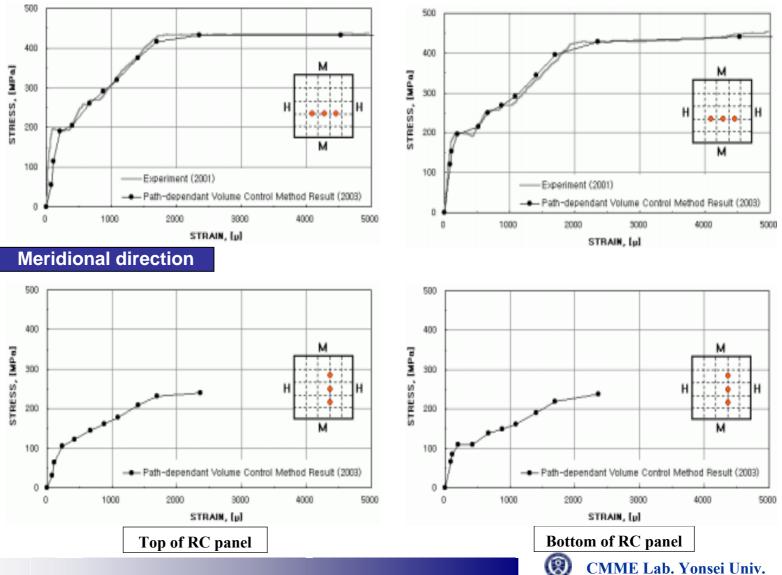
Bottom of RC panel 0 CMME Lab. Yonsei Univ.

м

5000

Stress-strain curve of rebars

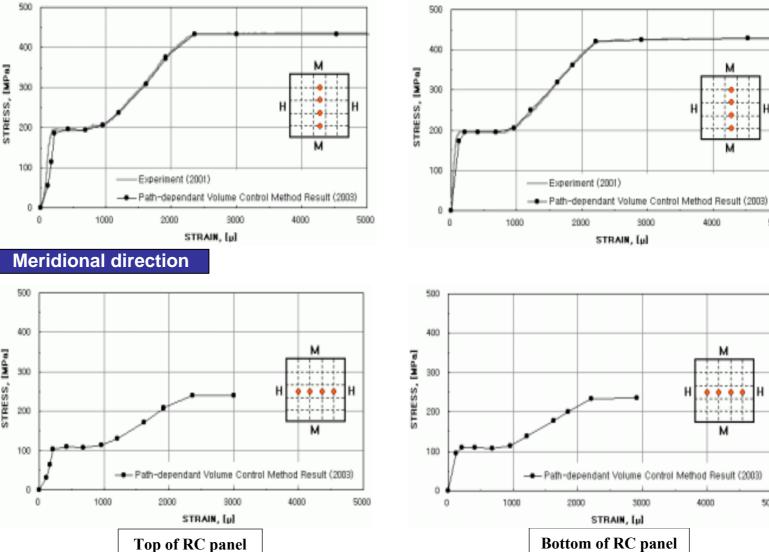
Hoop direction



CMME Lab. Yonsei Univ.

Stress-strain curve of rebars

Hoop direction



Bottom of RC panel ۲

CMME Lab. Yonsei Univ.

м

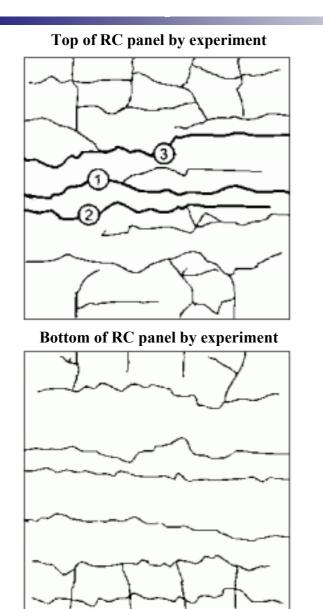
м

м

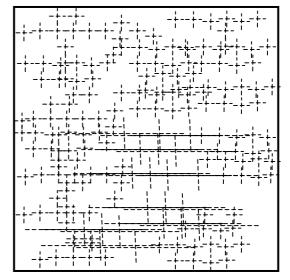
5000

5000

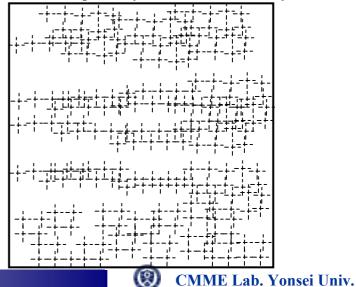
Crack patterns of RC panel



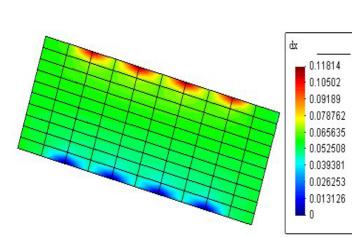
Top of RC panel by volume control analysis



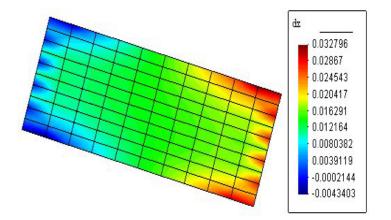
Bottom of RC panel by volume control analysis



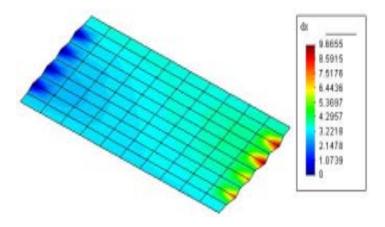
Deformed shape of RC panel



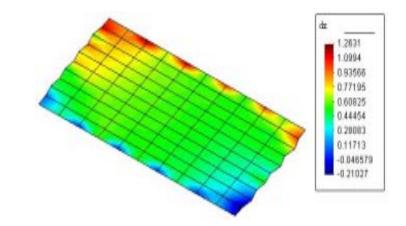
Hoop dir. displacement. at 1st crack occurrence



Meridional dir. displacement at 1st crack occurrence



Hoop dir. displacement. at rebar yielding

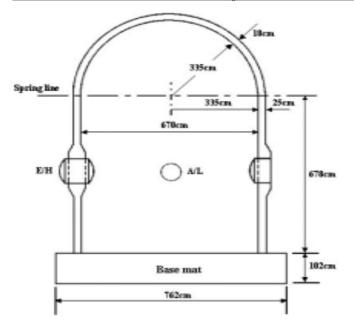


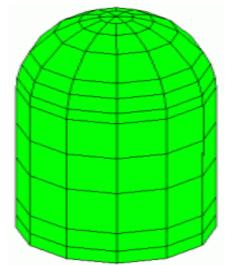
Meridional dir. displacement at rebar yielding

RCCV subjected to internal pressure

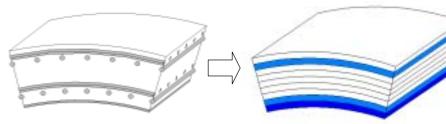
Specification < SNL, 2001 >

- Compressive strength of concrete $(_{c})$: 46.0MPa
- Tensile strength of concrete $(_{t})$: 3.45MPa
- Modulus of elasticity of concrete (E_c) : 33,100MPa
- Poisson's ratio of concrete $(_{c})$: 0.20
- Yield strength of reinforcement $(_{y})$: 450.0MPa
- Modulus of elasticity of reinforcement (E_s) : 214,000MPa
- Poisson's ratio of reinforcement (,): 0.30





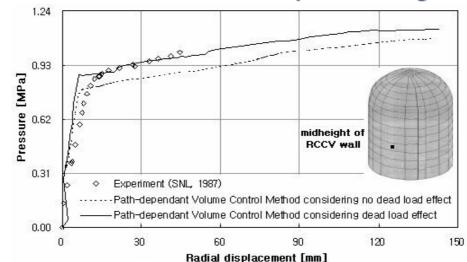
Modeling with or without considering foundation



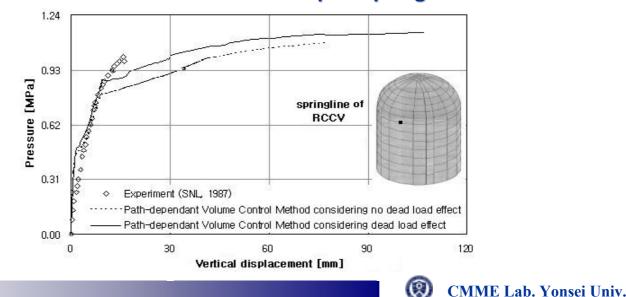
Layered shell element

Global behaviors

Radial displacement – Pressure relationship at mid-height

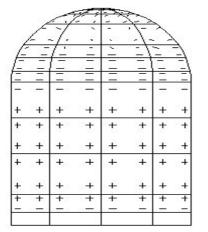


Vertical displacement – Pressure relationship at spring-line



Crack patterns of RCCV

1.0Pd (0.31MPa)



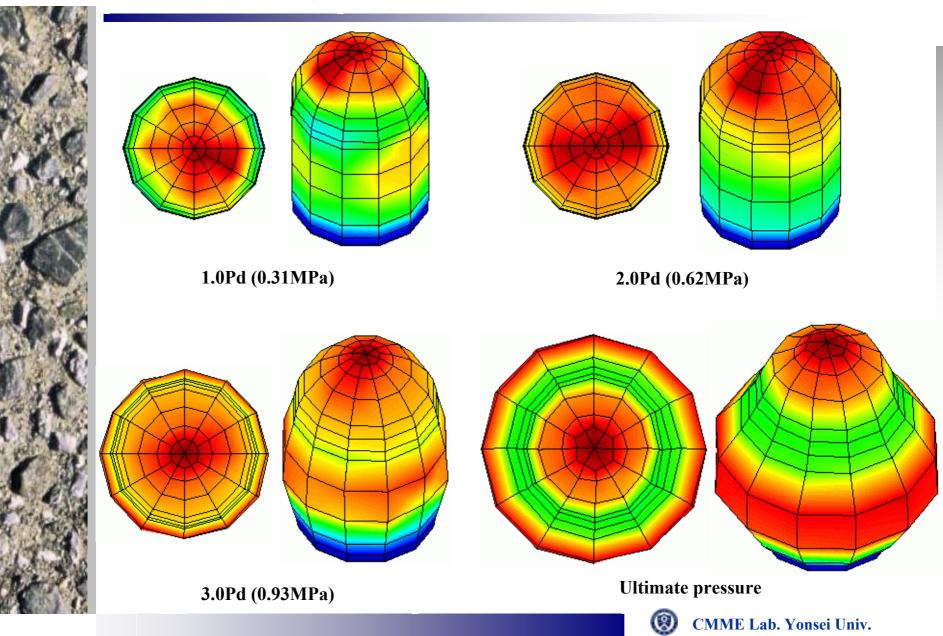
+ + + + + ++ + + + + + + + 4 + + +

2.0Pd (0.62MPa)

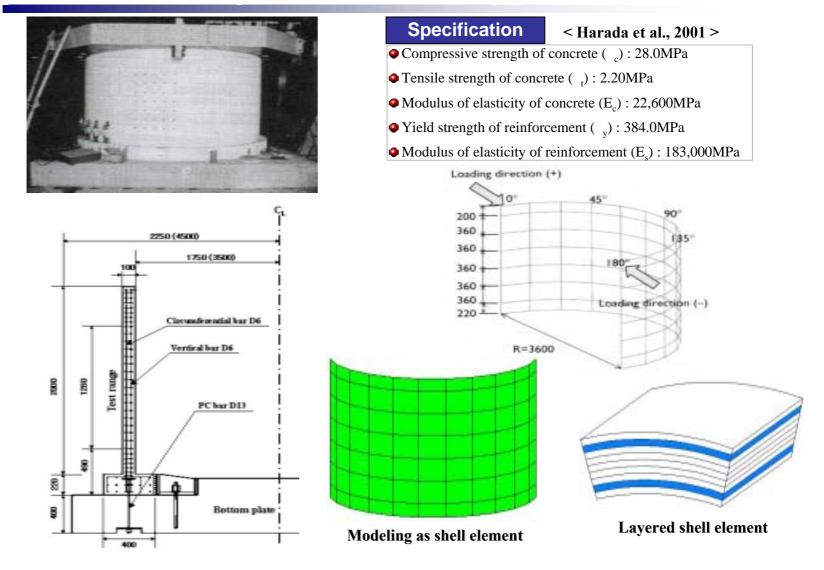
3.0Pd (0.93MPa)

		1	#7	1-1	1		
	Æ	4 +/+	+ +	+ +	+ + +	A	
A	4 -	+/+	+	+	+/+	<u>+</u> +	A
Æ	+	/ ‡	÷	+	- 1	+	/ ‡
H-	ŧ	ί±	+	ŧ	-	1	t
+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+

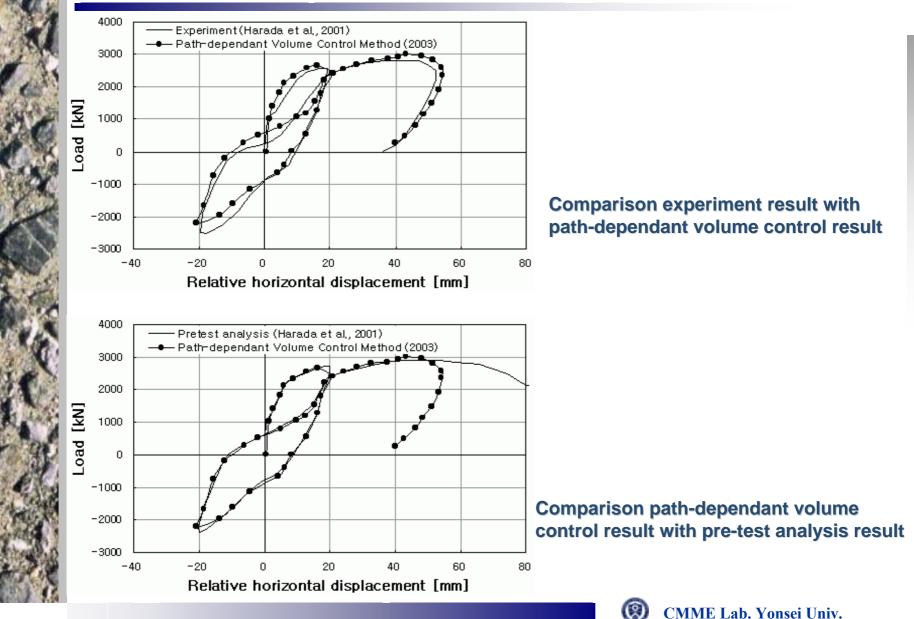
Deformed shape of RCCV



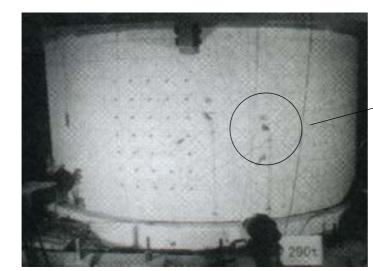
RC tank subjected to reversed cyclic loading

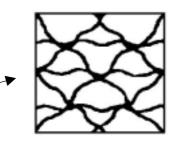


Relative horizontal displacement - load curve



Crack status of RC tank

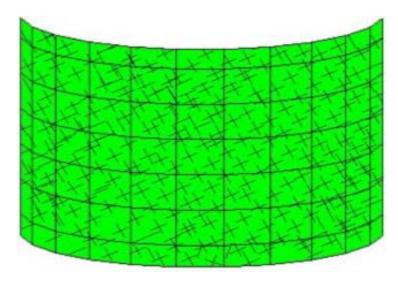




Multi-directional cracks occurrence due to reversed cyclic loading

Crack status of RC tank by experiment

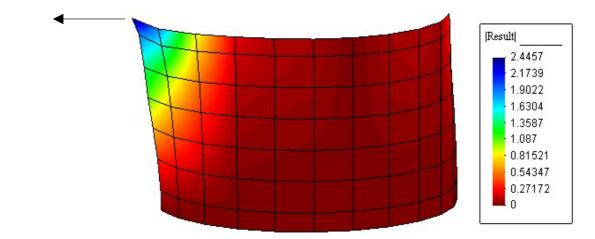
CMME Lab. Yonsei Univ.



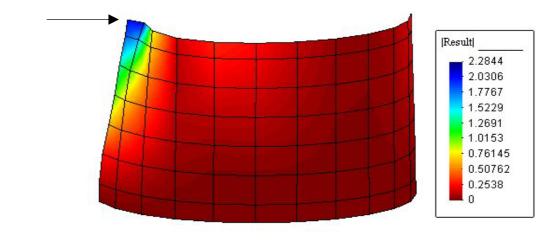
Crack status of RC tank by volume control analysis

Deformed shape of RC tank

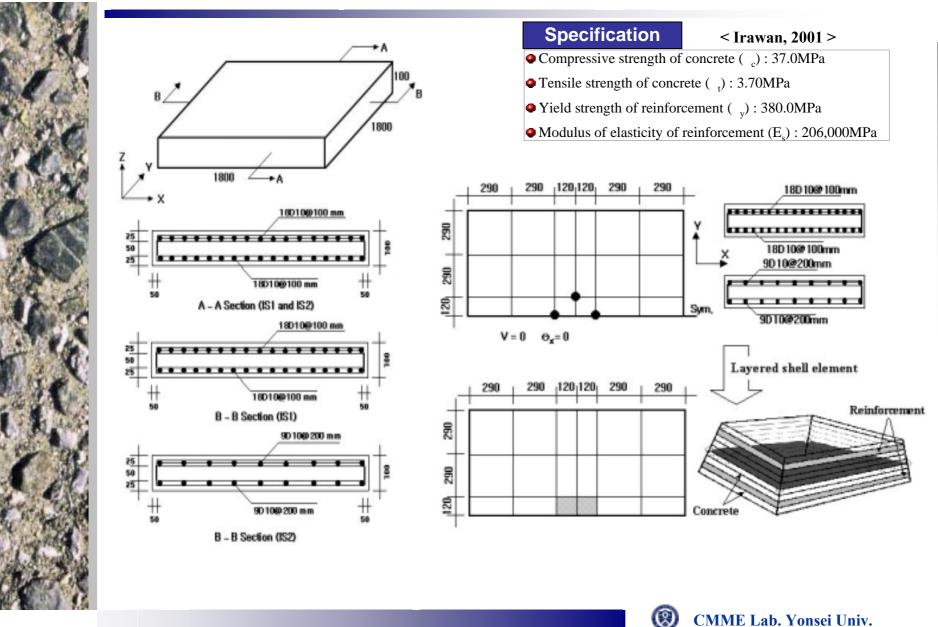
Horizontal load = 3,037 kN



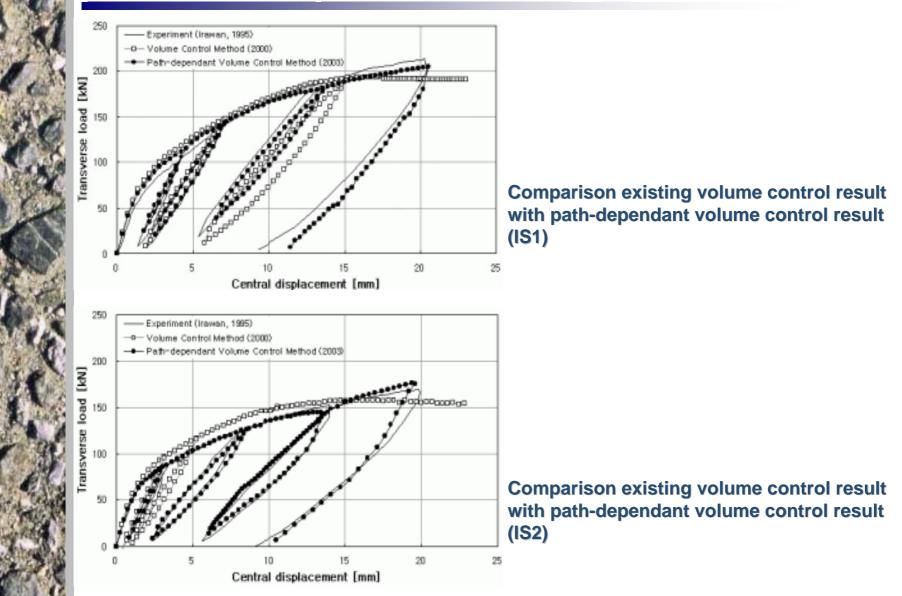
Horizontal load = -2,200 kN



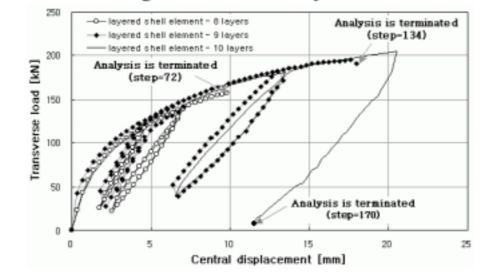
RC slab subjected to out-of plane cyclic loading



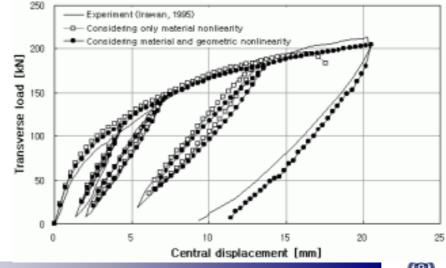
Central displacement - load curve



Analysis result according to number of layered shell element

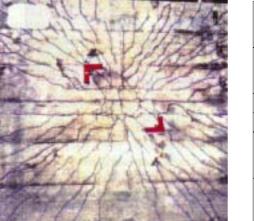


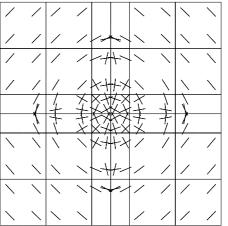
Analysis result according to number of layered shell element



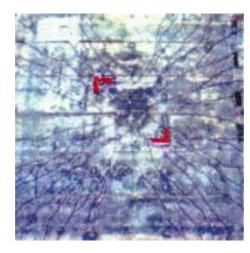
Crack status of RC slab

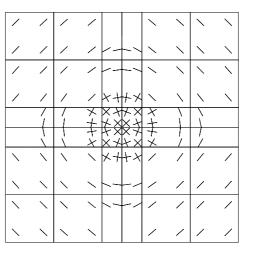
Specimen IS1 : vertical load = 193 kN





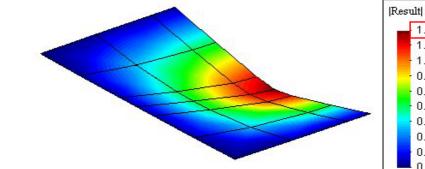
Specimen IS2 : vertical load = 193 kN





Deformed shape of RC slab

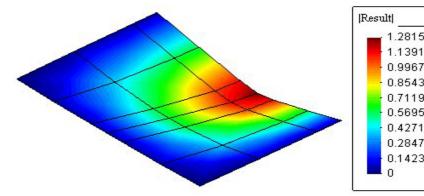
Specimen IS1 : vertical load = 178 kN



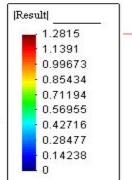
Isotropic reinforcement arrangement

Specimen IS2 : vertical load = 144 kN

Stiffness of IS1 > Stiffness of IS2 Due to reinforcement arrangement

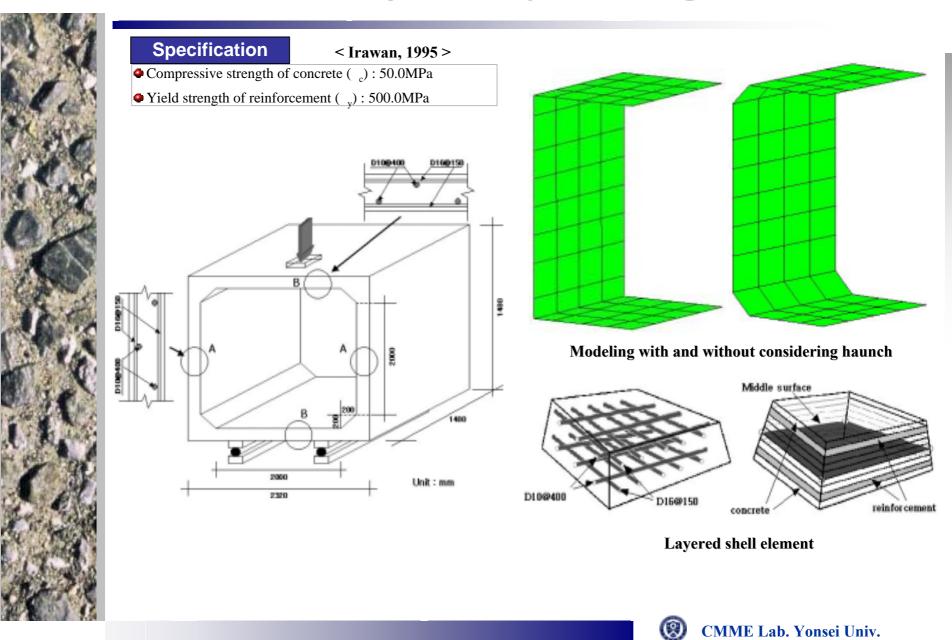


Anisotropic reinforcement arrangement



1.3892 1.2349 1.0805 0.92616 0.77179 0.61743 0.46307 0.30871 0.15435 n

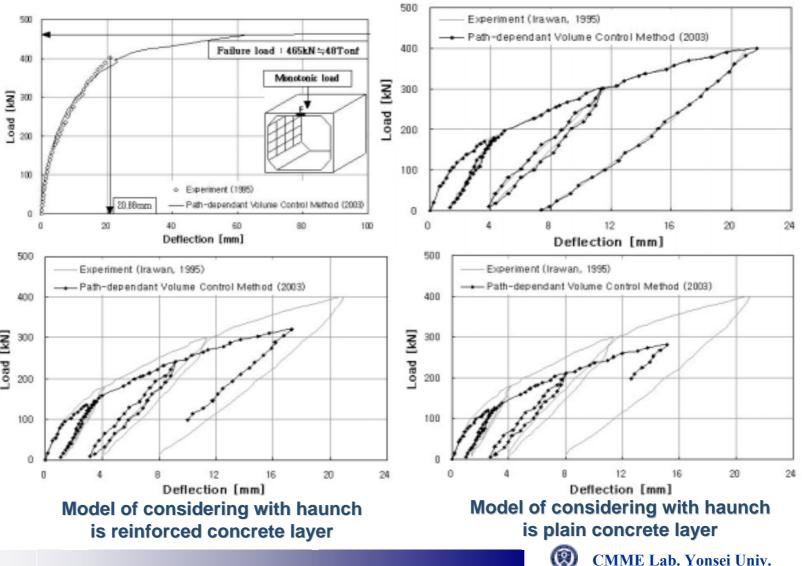
RC box culvert subjected to cyclic loading



Load-deflection curve of RC box culvert

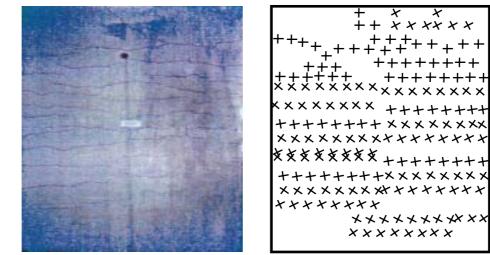
Static failure load : 48 tonf

Model of considering without considering haunch

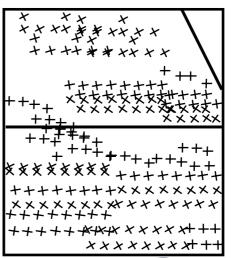


Crack status of RC box culvert

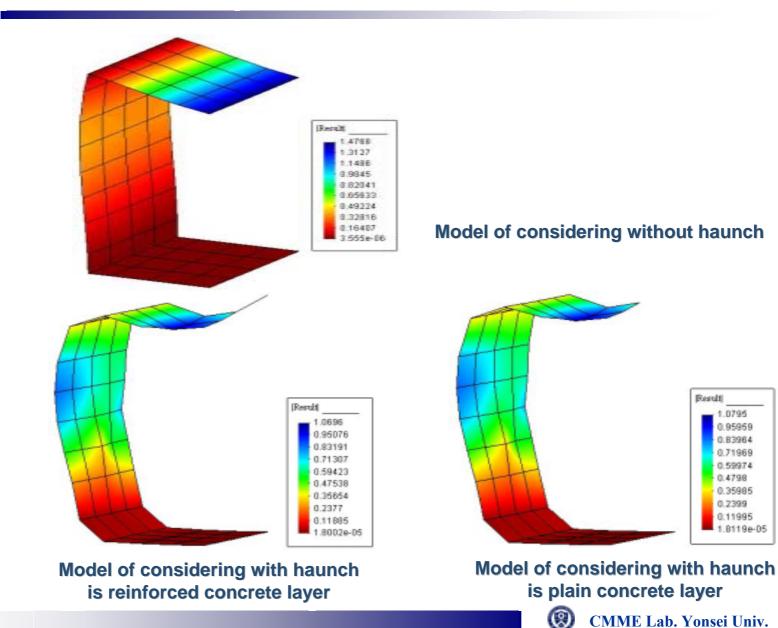
Wall of RC box culvert



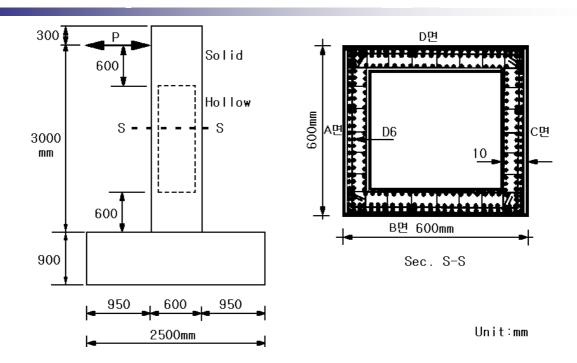
Top slab and wall of RC box culvert



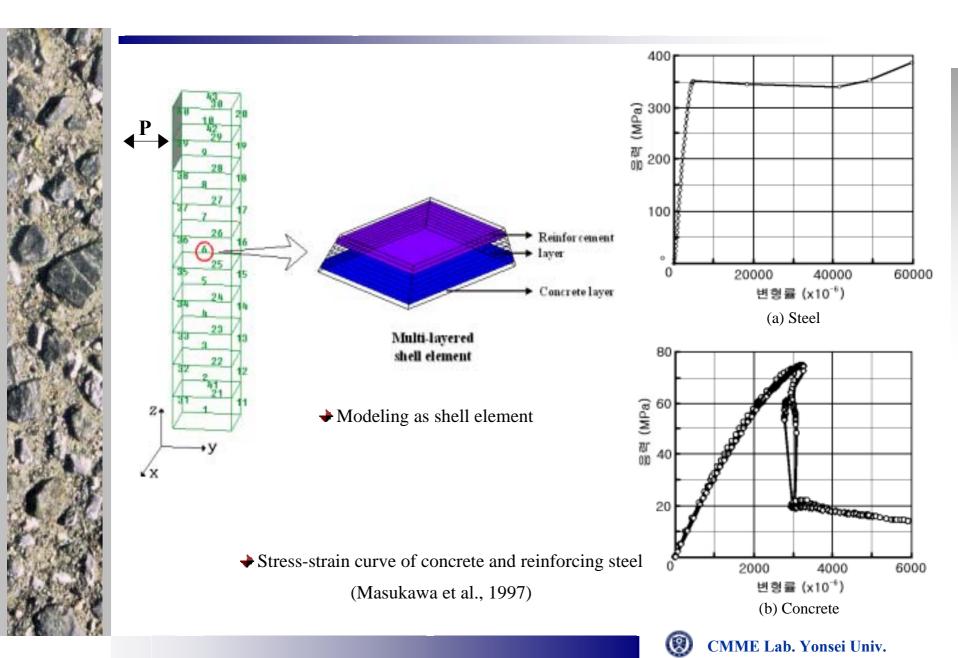
Deformed shape of RC box culvert



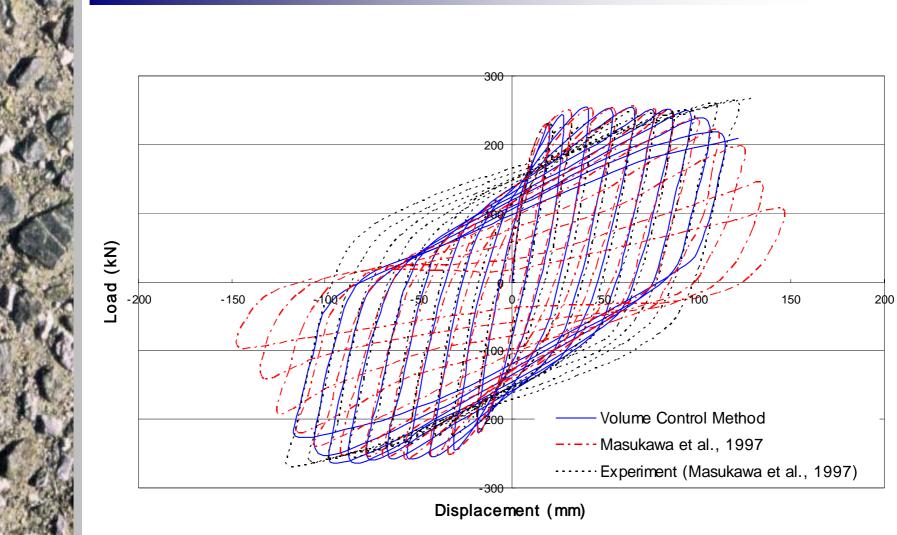
RC hollow column under lateral loading



Co	oncrete	Reinforcement		
f _c	76.5 MPa	f _v	350 MPa	
E _c	31.4 GPa	ŕ	421 MPa	
	0.21	Es	200 MPa	
f,	2.63 MPa			



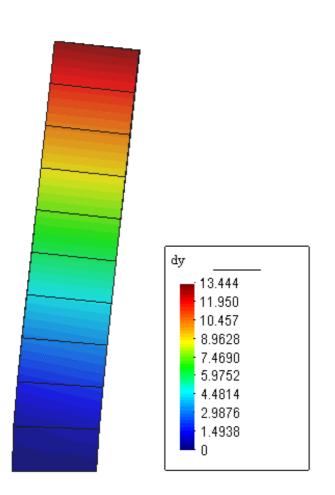
Load-displacement curve



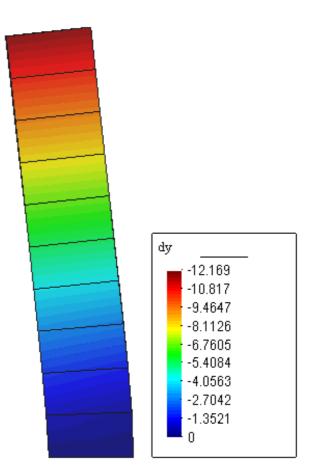
Masukawa et al., "Development of RC column members in use of high strength reinforcement", Proceedings of JCI, Vol. 19, No. 2, pp. 557-564, 1997

CMME Lab. Yonsei Univ.

Contour

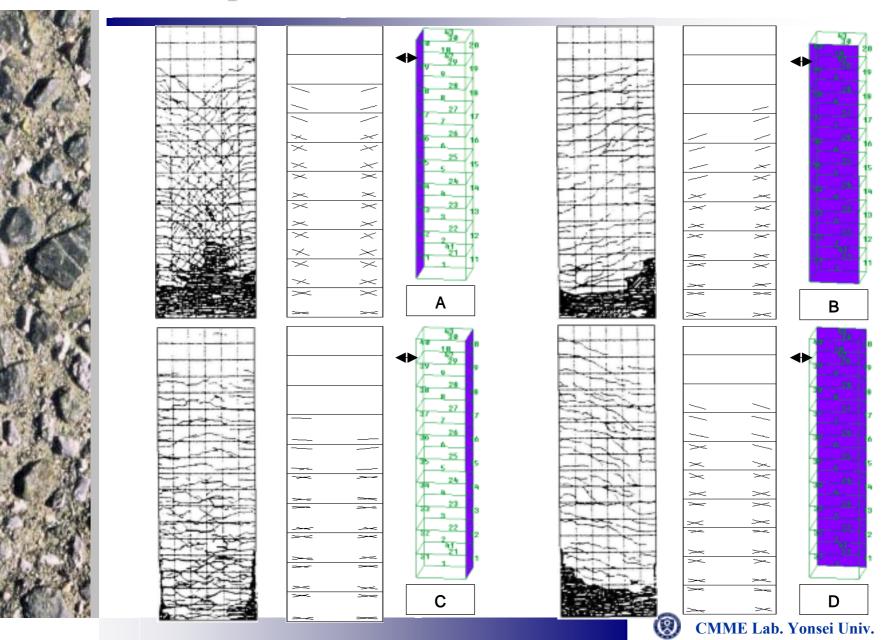


(a) At final compression



(a) At final tension

Crack patterns



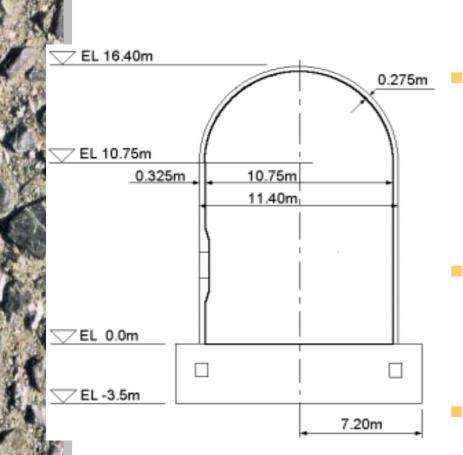
Analysis of 1/4 prestressed concrete containment vessel(PCCV)

Sandia National Laboratories, Albuquerque, New Mexico, 2000

Tendon layout

Unbonded tendon

Characteristics of Model Test and Analysis



1/4 Scale PCCV model

The first model test to satisfy material and design details of design code (ASME Sec. III, Div.2)

• limit state test (LST) and structural failure mechanism test (SFMT)

Large scale model including openings and steel liners

- 3D finite element modeling including tendons, rebars and openings using DIANA
 - **Pre-test analysis**
 - **Post-test analysis**
- Introduction of volume control technique

Model Tests (Failure Test due to Internal Pressure)

- Limit state test (LST)
- Pressurized by nitrogen gas

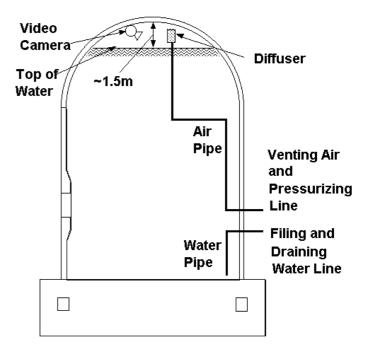
Structural soundness test & leakage test

 $\mathbf{1.5P}_{d},\,\mathbf{2.0P}_{d},\,\mathbf{2.5P}_{d}\text{ and }\mathbf{3.3P}_{d}$

(P_d = 0.39 MPa)

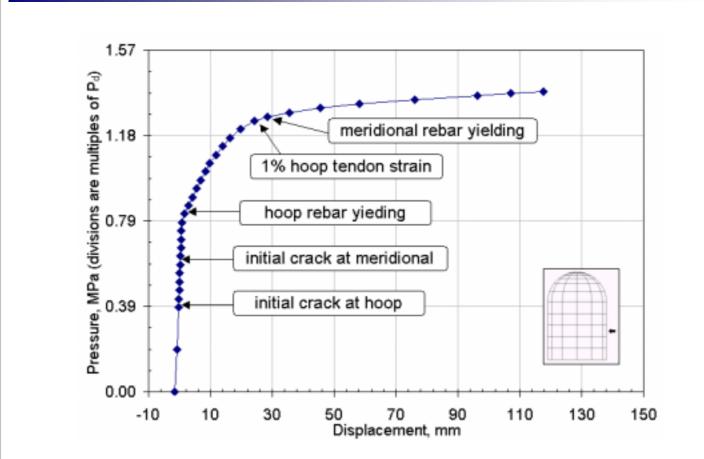
Functional failure due to leakage was occurred at 3.3P_d due to tearing of liner

- Structural failure mechanism test (SFMT)
 - Pressurized by water
 - Structural failure at 3.6P_d



Structural Failure Mechanism Test (SFMT)

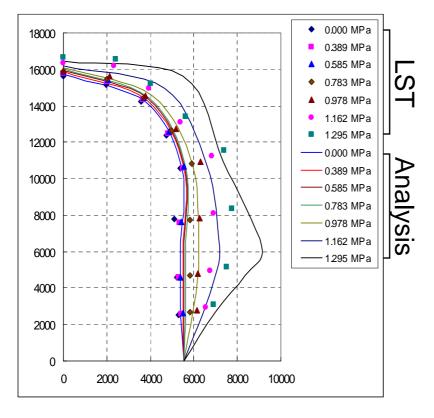
LST test result



-Hoop directional deformations govern PCCV behaviors

Test result and comparison with the analytical results

Deformation profile at 135° section (magnified ×100)



- For higher pressure, analysis generally predicts larger deformations than those by the test
- The analysis comparably well predicts the global behavior

LST results

Pressure/Pd	Leakage Rate*	Observation
1.5	0.5	no leakage
2.0		no evidence of distress
2.5	1.6	liner strain: 2% evidence of liner tear
3.0		difficult to increase pressure
3.1	100	
3.3		
Final	900	

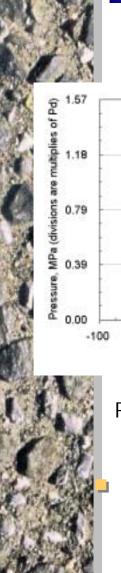
* volume change (%) per day (V/Day)

**Permissible leakage rate for design pressure:

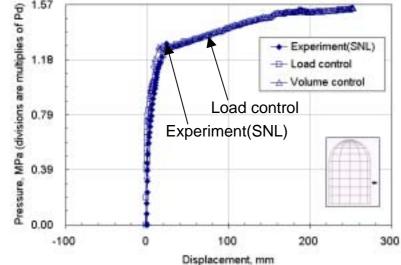
(pressurized water reactor with steel liner) 0.1% V/Day

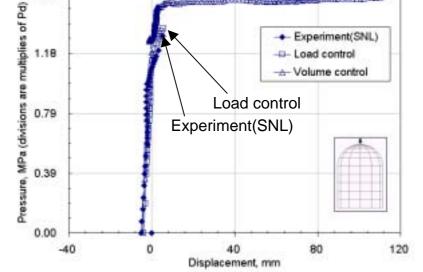
CMME Lab. Yonsei Univ.

Comparison

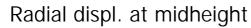


Deformations





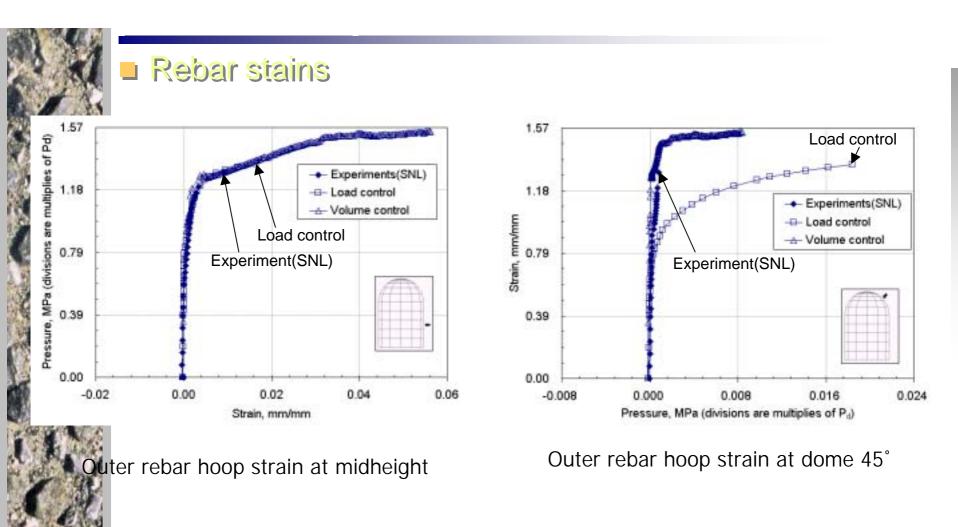
the second s



Vertical displ. at dome apex

More stable solution is possible with volume control technique

1.57



Conclusions and future work

- For the failure analysis of RC shell structures using FEM, both material and structural instability problems can be solved effectively by the homogenized crack model and the volume control technique.
- In-plane constitutive laws of cracked concrete and modified Barcelona model can be useful for the modeling of the layered RC shell element and ECC repaired layers.
- Failure analysis or performance evaluation of the deteriorated RC shell structures repaired with the ECC layers is now under carried out.

Thank you for your kind attention!

song@yonsei.ac.kr

