Failure Analysis of RC Structures using Volume Control Technique

-COE Intensive Course-

Feb. 3, 2005

Hokkaido University, Sapporo, Japan

Ha-Won Song

School of Civil and Environmental Engineering

Concrete Materials, Mechanics and Engineering Lab. YONSEI UNIVERSITY

Outline

Introduction

Characteristic of failure in concrete structures

Homogenized crack model

Volume control method

Modeling for cracked RC and ECC

Constitutive equations of RC/ Layered shell element

Modeling of ECC as re-strengthening material

Analysis results and comparison

RCCV subjected to internal pressure RC tank , RC slab, and RC box culvert subjected to various loading RC hollow column subjected to lateral loading Verification with PCCV

Conclusion and future work

Performance of deteriorated/repaired RC structures ?

Characteristics of concrete fracture and analysis

Material instability

Structural instability

Sources of Non-linearity ; Material, Geometrical, Boundary and Contact

Effort to solve structural instability in progressive failure of concrete shell structures using FEM

Failure analysis of RC shell structures subjected to various loadings

Load Control Method : difficulty to obtain post-peak ultimate behavior of RC structures

Displacement Control Method : difficulty to select a representative point for displacement control in 3D

Layered shell utilizing in-plane constitutive models of RC

 Remove the drawback of load control method

 overcome the limitation for displacement control method

Volume Control Method

Volume Control Method with Pressure Node

 Pressure Node : the uniform change of applied pressure on the shell element (Δp) (Song and Tassoulas, IJNME, 1993)

$$\Delta V = \int_{b^{e}} \mathbf{n}^{T} \cdot \Delta \mathbf{u} \, \mathrm{d} b^{e} = \left(\int_{b^{e}} \mathbf{n}^{T} \cdot N \, \mathrm{d} b^{e} \right) \Delta U$$

$$\int_{b^{e}} N^{T} (\mathbf{t} + \Delta \mathbf{t}) \, \mathrm{d} b^{e} = -(\mathbf{p} + \Delta \mathbf{p}) \int_{b^{e}} N^{T} \mathbf{n} \, \mathrm{d} b$$

$$\mathbf{K}_{e} \, \Delta U = -(\mathbf{p} + \Delta \mathbf{p}) \int_{b^{e}} N^{T} \mathbf{n} \, \mathrm{d} b^{e} - \mathbf{F}_{e}$$

$$\mathbf{K}_{e} \, \int_{b^{e}} N^{T} \mathbf{n} \, \mathrm{d} b^{e} = 0$$

$$\mathbf{M}_{b^{e}} = \left[\begin{array}{c} \mathbf{p} \int_{b^{e}} N^{T} \mathbf{n} \, \mathrm{d} b^{e} - \mathbf{F}_{e} \\ \Delta V \end{array} \right]$$

Path dependant pseudo-volume control technique

Pseudo Volume (Song et. al, J. Str. Eng. 2002)

Path-dependent Volume (Song et. al, Nuclear Eng. and Design, 2003)

Algorithm for path dependant volume control technique

Layered shell element

• Degenerated, isoparametric, serendipity, quadratic shell element with drilling degree of freedom

- Geometrical nonlinearity is considered by adopting total Lagrangian formulation
- In plane constitutive laws applied to each layer of element consists of RC layers and PL layers

Constitutive law for each layer

- Concrete under compression : Elasto-plastic fracture model (Maekawa et. al)
- Cracked concrete : Smeared fixed crack model
- Concrete under shear : Crack density model (Maekawa and Li)

Shear locking + Membrane locking

Reduced integration (2 x 2 Gaussian quadrature)

In-plane constitutive models of cracked concrete

Cracking criteria of concrete

Cracking is affected by past loading history.

< Failure envelope in tension-compression domain >

< Normalized tensile strength and fracture parameter >

By taking account influence of **continuum fracture** in past compression, cracking criterion can be defined in the space of biaxial principal stresses

$$\frac{\sigma_1}{(R_f \cdot f_t)} = 1.0$$
Compression-tension domain
$$\frac{\sigma_1}{(R_f \cdot f_t)} = 1.0$$
Where, $_1, _2$: principal stress ($_1 > _2$)
 f_t : uniaxial tensile strength
$$R_f$$
: tensile strength reduction factor

Tension stiffening model

Concrete model under tensile stress is unrelated to spacing of cracks, direction of reinforcing bars and reinforcement ration.

Tension stiffening effect is known to increase overall stiffness of RC in tension compared with that of single reinforcing bar.

< Tension stiffening model for deformed bars (c=0.4) and welded meshes (c=0.2) >

$$\sigma_t = f_t \left(\frac{\varepsilon_{tu}}{\varepsilon_t} \right)^c$$

Where, t: average tensile stress, t: average tensile strain

- f_t : uniaxial tensile strength, t_u : cracking strain
- c : stiffening parameter

Steel model

Reinforcing bar model is based on the assumed cosine distribution of bar stress and concrete tension stiffening.

Multi-directional smeared crack approach

Two-way active cracks may control the overall nonlinearity as for out of plane cyclic action

Orthogonal two-way fixed crack model

ECC as durable overlays and repair layers

Engineered_Cementitious Composites (ECC)

- V.C. Li et al. 1992~
 ➤ cementitious matrix + short random fibers
- Conscious micromechanics-based design of material composition ... Performance Driven Design Approach
- ≻high performance with low fiber content (~2%)

High performance cementitious composites

➤multiple cracking

high overall ductility in tension and shear

with ease of processing and variability of shaping

➤ damage tolerance, durability, ...

Characteristic of ECC behavior

mechanical properties:

- high tensile strain capacity (~5%)
- small crack width O(10~100 μ m)

- Strain hardening
- Multiple cracking
- Localized failure

3-d homogenized crack model

 $\sigma_{i}^{(1)}, \epsilon_{i}^{(2)}$: concrete

 σ_{i} , ε_{i} : crack

X

Z

(REV)

Η

- $\boldsymbol{\sigma}^{\mu} = \mu_{i} \boldsymbol{\sigma}^{\mu} + \mu_{j} \boldsymbol{\sigma}^{\mu} \boldsymbol{\varepsilon}^{\mu} \boldsymbol{\varepsilon$ $\mu_{i} + \mu_{j} = 1$
- Equilibrium & compatibility $\sigma_{yy}^{\mu} = \sigma_{yy}^{\mu} = \sigma_{yy}^{\mu} = \varepsilon_{yz}^{\mu} = \varepsilon_{z}^{\mu} = \varepsilon_{z}^$
- Velocity discontinuity at crack surface $\mathbf{g} = \{ \mathbf{g}, \mathbf{g}, \mathbf{g}, \mathbf{g}^T \mid \mathbf{\delta} \} \mathbf{\sigma}^{\mathbf{\mu}} = [\mathbf{K}] \mathbf{g}$ **Representative elementary volume** $\begin{bmatrix} \boldsymbol{\delta} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$ $\boldsymbol{\sigma}_{j}^{e}, \ \boldsymbol{\varepsilon}_{j}^{e}: \ crack$ $\boldsymbol{\sigma}_{k}^{e}, \ \boldsymbol{\varepsilon}_{j}^{e}: \ concrete \ with \ crack$ $\boldsymbol{[K]} = \begin{bmatrix} K_{11} & K_{12} & K_{13} \\ K_{21} & K_{22} & K_{23} \\ K_{31} & K_{32} & K_{33} \end{bmatrix} \quad \boldsymbol{[K]} = \boldsymbol{[K^{e}]} = \begin{bmatrix} K_{N} & 0 & 0 \\ 0 & K_{S1} & 0 \\ 0 & 0 & K_{S2} \end{bmatrix}$

If t H,

$$\mu_{i} = \frac{BW(H - t)}{HBW} \cong 1$$

$$\mu_{j} = \frac{BWt}{HBW} \cong \frac{t}{H}$$

$$\frac{1}{t} \underbrace{\boldsymbol{\mathcal{G}}}_{\boldsymbol{\mathcal{H}}} [\boldsymbol{\delta}] \boldsymbol{\mathcal{E}}^{\boldsymbol{\mathcal{G}}}$$
averaged crack strain
Let $\boldsymbol{\mu}$ be the ratio of the crack area and REV., i.e. $(\boldsymbol{\mu} := \frac{1}{H})$
Then, $\boldsymbol{\mathcal{E}}^{\boldsymbol{\mathcal{G}}} = \mu_{i} \boldsymbol{\mathcal{E}}^{\boldsymbol{\mathcal{G}}} + \mu_{j} \boldsymbol{\mathcal{E}}^{\boldsymbol{\mathcal{G}}}$ can be written as
 $[\boldsymbol{\delta}] \boldsymbol{\mathcal{E}}^{\boldsymbol{\mathcal{G}}} \mu_{i} [\boldsymbol{\delta}] \boldsymbol{\mathcal{E}}^{\boldsymbol{\mathcal{G}}} + \mu_{j} [\boldsymbol{\delta}] \boldsymbol{\mathcal{E}}^{\boldsymbol{\mathcal{G}}}$

$$= 1 \cdot [\boldsymbol{\delta}] \boldsymbol{\mathcal{E}}^{\boldsymbol{\mathcal{G}}} + \frac{t}{H} \cdot \frac{1}{t} \underbrace{\boldsymbol{\mathcal{G}}}_{\boldsymbol{\mathcal{G}}}$$

$$= [\boldsymbol{\delta}] \boldsymbol{\mathcal{E}}^{\boldsymbol{\mathcal{G}}} + \mu \underbrace{\boldsymbol{\mathcal{G}}}_{\boldsymbol{\mathcal{G}}}$$

 Structural relationship $\boldsymbol{\sigma}^{\mu} = [\boldsymbol{D}]\boldsymbol{\varepsilon}^{\mu} \qquad \boldsymbol{\sigma}^{\mu} = \mu_{i} \boldsymbol{\sigma}^{\mu} + \mu_{i} \boldsymbol{\sigma}^{\mu}$ $[\delta] \varepsilon = [\delta] \varepsilon + \mu \varepsilon$ $[\delta] \varepsilon^{\square} = [A] \varepsilon^{\square} [B] \varepsilon^{\square}$ $[A] = \begin{bmatrix} -\frac{D_{21}}{C_1} & \frac{-K_{11}}{\mu C_1} & \frac{-D_{23}}{C_1} & \frac{-D_{24}}{C_1} & \frac{-D_{25}}{C_1} & \frac{-D_{26}}{C_1} \\ \frac{-D_{41}}{C_2} & \frac{-D_{42}}{C_2} & \frac{-D_{43}}{C_2} & \frac{-K_{22}}{\mu C_2} & \frac{-D_{45}}{C_2} & \frac{-D_{46}}{C_2} \\ \frac{-D_{51}}{C_3} & \frac{-D_{52}}{C_3} & \frac{-D_{53}}{C_3} & \frac{-D_{54}}{C_3} & \frac{-K_{33}}{\mu C_3} & \frac{-D_{56}}{C_3} \end{bmatrix}$ $[\mathbf{B}] = \begin{bmatrix} 0 & \frac{K_{12} + \mu D_{24}}{C_1} & \frac{K_{13} + \mu D_{25}}{C_1} \\ \frac{K_{21} + \mu D_{42}}{C_2} & 0 & \frac{K_{23} + \mu D_{45}}{C_2} \\ \frac{K_{31} + \mu D_{52}}{C_3} & \frac{K_{32} + \mu D_{54}}{C_3} & 0 \end{bmatrix} \quad \begin{array}{c} C_1 = D_{22} + \frac{K_{11}}{\mu} \\ C_2 = D_{44} + \frac{K_{22}}{\mu} \\ C_3 = D_{55} + \frac{K_{33}}{\mu} \\ \end{array}$ () CMME Lab. Yonsei Univ.

• Structural relationship of (tensile) crack

 $[\delta] \varepsilon [\delta] \varepsilon [\mu] \varepsilon [\delta] \varepsilon [S] \varepsilon [S]$

 $\underbrace{\mathbf{s}}_{\mu}^{1}([\boldsymbol{\delta}] - [\boldsymbol{S}]) \boldsymbol{\boldsymbol{s}}_{\mu}^{1}$ Let $[\boldsymbol{S}_{2}] = \frac{1}{\mu}([\boldsymbol{\delta}] - [\boldsymbol{S}])$ $\underbrace{\mathbf{s}}_{\mu}^{1}[\boldsymbol{S}_{2}] \boldsymbol{\boldsymbol{s}}_{\mu}^{1}$

then

• Total strain relationship

$$[\boldsymbol{\delta}] \, \boldsymbol{\varepsilon}^{\square} = [\boldsymbol{S}] \, \boldsymbol{\varepsilon}^{\square}$$
$$[\boldsymbol{S}] = ([\boldsymbol{I}] + \frac{1}{\mu} [\boldsymbol{B}])^{-1} ([\boldsymbol{A}] + \frac{1}{\mu} [\boldsymbol{B}] [\boldsymbol{\delta}])$$

$$\boldsymbol{\varepsilon}^{[i]} = [\boldsymbol{S}_1] \boldsymbol{\varepsilon}^{[i]}$$

$$[\boldsymbol{S}_{1}] = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ S_{11} & S_{12} & S_{13} & S_{14} & S_{15} & S_{16} \\ 0 & 0 & 1 & 0 & 0 & 0 \\ S_{21} & S_{22} & S_{23} & S_{24} & S_{25} & S_{26} \\ S_{31} & S_{32} & S_{33} & S_{34} & S_{35} & S_{36} \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

• Homogenized constitutive equation

$$\boldsymbol{\sigma}^{\mu} = \mu_{i} \boldsymbol{\sigma}^{\mu} + \mu_{i} \boldsymbol{\sigma}^{\mu}$$

$$\approx \boldsymbol{\sigma}^{\mu}$$

$$= [\boldsymbol{D}][\boldsymbol{S}_{1}] \boldsymbol{\varepsilon}^{\mu}$$

$$\boldsymbol{\sigma}^{\mu} = [\boldsymbol{D}^{eq}] \boldsymbol{\varepsilon}^{\mu}$$

 $[D^{eq}] = [D][S_1]$

Remark

Crack width, t, is removed in the final constitutive equation only expressed with μ . This is a solution for the mesh sensitivity problem without the introduction of additional length scale such as a characteristic length.

Regularization of the continuum model

Constitutive equation for crack

- Compression
- Bifurcation analysis for crack initiation

$$F(\boldsymbol{n}) = \det(n_i D^{eq}_{ijkl} n_l)$$

$$[\mathbf{K}] = \begin{bmatrix} K_N^{ep} & 0 & 0\\ 0 & K_{S1}^{ep} & 0\\ 0 & 0 & K_{S2}^{ep} \end{bmatrix}$$

Failure criteria and softening curve (compression)

- **Drucker-Prager type** $F = \alpha I_1 + \sqrt{J_2} - k(\overline{\sigma}, \overline{\varepsilon}^p) = 0$
- Hardening and softening function
 - 1) Song and Na (1997)

$$k(\overline{e}^{p},\overline{\sigma}) = \sigma_{0} + \overline{\sigma}\overline{e}^{p} + (\sigma_{\infty} - \sigma_{0})[1 - e^{-\beta\overline{e}}] - \sqrt{\frac{3}{2}}\alpha p$$

2) Song et al (2003), Farahat et al.(1995)

$$k(W^{p}) = k_{0}e^{-[(\beta W^{p})^{\gamma} - \xi]^{2}}$$

- 3) Barcelona model
 - k(^p) (J. Lubliner, 1996) $k(\varepsilon^{p}) = f_{N0}[(1 + a_{N})\exp(-b_{N}\varepsilon^{p}) - a_{N}\exp(-2b_{N}\varepsilon^{p})]$
 - k(W^p) (Modified Barcelona Model, MBM) $k(W^{p}) = f_{N0}[(1 + a_{N}) \exp(-b_{N}W^{p}) - a_{N} \exp(-2b_{N}W^{p})]$

Failure criteria and softening function (tension)

Failure criterial (Gopalaratnam and Shah, 1985)

$$F = \sigma_1 - k(\cdot)$$

Hardening and softening function

1) Gopalaratnam and Shah (1985)

$$k(t) = f_t(e^{-\kappa t^{\lambda}})$$

- 2) Song et al. (2003) $k(g_{y}) = f_{t}(e^{-\kappa(\eta g_{y})^{\lambda}})$
- 3) Barcelona model
 - $k(\varepsilon^{p})$ (J. Lubliner, 1996)

$$k(\varepsilon^{p}) = f_{t0}[(1 + a_{t})\exp(-b_{t}\varepsilon^{p}) - a_{t}\exp(-2b_{t}\varepsilon^{p})]$$

 $k(\mathfrak{F}_{y})$ (MBM)

 $k(g_{y}) = f_{t0}[(1 + a_{t})\exp(-b_{t}'g_{y}) - a_{t}\exp(-2b_{t}'g_{y})]$

Hardening and softening curve for concrete and ECC (tension)

> J. Lubliner (1996)

$$k(g_{y}) = f_{t0}[(1 + a_{t})\exp(-b_{t}'g_{y}) - a_{t}\exp(-2b_{t}'g_{y})]$$

$$a_t < 1$$
 \longrightarrow Concrete
 $a_t > 1$ \longrightarrow ECC

Result for 2% polyetylane fiber contained ECC

 $a_t = 0.1$: Concrete

 $a_t = 5$: ECC

0.75% ECC

1% ECC

1.25% ECC

Mesh sensitivity check on softening behavior

Comparison with experimental result

Mesh sensitivity check for tension

> Tension failure with damage

Results

RC panel of simulating RCCV wall subjected to biaxial tension

FEM MESH and Boundary condition

Stress-strain curve of rebars

500

400

300

100

Ű.

[MPa]

STRESS, 200

Hoop direction 500 400 м STRESS, [MPa] 300 200 м 100 - Experiment (2001) -Experiment (2001) — Path-dependant Volume Control Method Result (2003) Path-dependant Volume Control Method Result (2003) 0 1000 2000 3000 4000 5000 0 0 1000 2000 3000 4000 STRAIN, [µ] STRAIN, [µ] **Meridional direction** 500

Bottom of RC panel 0 CMME Lab. Yonsei Univ.

м

5000

Stress-strain curve of rebars

Hoop direction

CMME Lab. Yonsei Univ.

Stress-strain curve of rebars

Hoop direction

Bottom of RC panel ۲

CMME Lab. Yonsei Univ.

м

м

м

5000

5000

Crack patterns of RC panel

Top of RC panel by volume control analysis

Bottom of RC panel by volume control analysis

Deformed shape of RC panel

Hoop dir. displacement. at 1st crack occurrence

Meridional dir. displacement at 1st crack occurrence

Hoop dir. displacement. at rebar yielding

Meridional dir. displacement at rebar yielding

RCCV subjected to internal pressure

Specification < SNL, 2001 >

- Compressive strength of concrete $(_{c})$: 46.0MPa
- Tensile strength of concrete $(_{t})$: 3.45MPa
- Modulus of elasticity of concrete (E_c) : 33,100MPa
- Poisson's ratio of concrete $(_{c})$: 0.20
- Yield strength of reinforcement $(_{y})$: 450.0MPa
- Modulus of elasticity of reinforcement (E_s) : 214,000MPa
- Poisson's ratio of reinforcement (,): 0.30

Modeling with or without considering foundation

Layered shell element

Global behaviors

Radial displacement – Pressure relationship at mid-height

Vertical displacement – Pressure relationship at spring-line

Crack patterns of RCCV

1.0Pd (0.31MPa)

+ + + + + ++ + + + + + + + 4 + + +

2.0Pd (0.62MPa)

3.0Pd (0.93MPa)

		1	#7	1-1	1		
	Æ	4 +/+	+ +	+ +	+ + +	A	
A	4 -	+/+	+	+	+/+	<u>+</u> +	A
Æ	+	/ ‡	÷	+	- 1	+	/ ‡
H-	ŧ	ί±	+	ŧ	-	1	t
+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+

Deformed shape of RCCV

RC tank subjected to reversed cyclic loading

Relative horizontal displacement - load curve

Crack status of RC tank

Multi-directional cracks occurrence due to reversed cyclic loading

Crack status of RC tank by experiment

CMME Lab. Yonsei Univ.

Crack status of RC tank by volume control analysis

Deformed shape of RC tank

Horizontal load = 3,037 kN

Horizontal load = -2,200 kN

RC slab subjected to out-of plane cyclic loading

Central displacement - load curve

Analysis result according to number of layered shell element

Analysis result according to number of layered shell element

Crack status of RC slab

Specimen IS1 : vertical load = 193 kN

Specimen IS2 : vertical load = 193 kN

Deformed shape of RC slab

Specimen IS1 : vertical load = 178 kN

Isotropic reinforcement arrangement

Specimen IS2 : vertical load = 144 kN

Stiffness of IS1 > Stiffness of IS2 Due to reinforcement arrangement

Anisotropic reinforcement arrangement

1.3892 1.2349 1.0805 0.92616 0.77179 0.61743 0.46307 0.30871 0.15435 n

RC box culvert subjected to cyclic loading

Load-deflection curve of RC box culvert

Static failure load : 48 tonf

Model of considering without considering haunch

Crack status of RC box culvert

Wall of RC box culvert

Top slab and wall of RC box culvert

Deformed shape of RC box culvert

RC hollow column under lateral loading

Co	oncrete	Reinforcement		
f _c	76.5 MPa	f _v	350 MPa	
E _c	31.4 GPa	ŕ	421 MPa	
	0.21	Es	200 MPa	
f,	2.63 MPa			

Load-displacement curve

Masukawa et al., "Development of RC column members in use of high strength reinforcement", Proceedings of JCI, Vol. 19, No. 2, pp. 557-564, 1997

CMME Lab. Yonsei Univ.

Contour

(a) At final compression

(a) At final tension

Crack patterns

Analysis of 1/4 prestressed concrete containment vessel(PCCV)

Sandia National Laboratories, Albuquerque, New Mexico, 2000

Tendon layout

Unbonded tendon

Characteristics of Model Test and Analysis

1/4 Scale PCCV model

The first model test to satisfy material and design details of design code (ASME Sec. III, Div.2)

• limit state test (LST) and structural failure mechanism test (SFMT)

Large scale model including openings and steel liners

- 3D finite element modeling including tendons, rebars and openings using DIANA
 - **Pre-test analysis**
 - **Post-test analysis**
- Introduction of volume control technique

Model Tests (Failure Test due to Internal Pressure)

- Limit state test (LST)
- Pressurized by nitrogen gas

Structural soundness test & leakage test

 $\mathbf{1.5P}_{d},\,\mathbf{2.0P}_{d},\,\mathbf{2.5P}_{d}\text{ and }\mathbf{3.3P}_{d}$

(P_d = 0.39 MPa)

Functional failure due to leakage was occurred at 3.3P_d due to tearing of liner

- Structural failure mechanism test (SFMT)
 - Pressurized by water
 - Structural failure at 3.6P_d

Structural Failure Mechanism Test (SFMT)

LST test result

-Hoop directional deformations govern PCCV behaviors

Test result and comparison with the analytical results

Deformation profile at 135° section (magnified ×100)

- For higher pressure, analysis generally predicts larger deformations than those by the test
- The analysis comparably well predicts the global behavior

LST results

Pressure/Pd	Leakage Rate*	Observation
1.5	0.5	no leakage
2.0		no evidence of distress
2.5	1.6	liner strain: 2% evidence of liner tear
3.0		difficult to increase pressure
3.1	100	
3.3		
Final	900	

* volume change (%) per day (V/Day)

**Permissible leakage rate for design pressure:

(pressurized water reactor with steel liner) 0.1% V/Day

CMME Lab. Yonsei Univ.

Comparison

Deformations

the second s

Vertical displ. at dome apex

More stable solution is possible with volume control technique

1.57

Conclusions and future work

- For the failure analysis of RC shell structures using FEM, both material and structural instability problems can be solved effectively by the homogenized crack model and the volume control technique.
- In-plane constitutive laws of cracked concrete and modified Barcelona model can be useful for the modeling of the layered RC shell element and ECC repaired layers.
- Failure analysis or performance evaluation of the deteriorated RC shell structures repaired with the ECC layers is now under carried out.

Thank you for your kind attention!

song@yonsei.ac.kr

