Problems of Concrete Structures and Effort toward Durability Design in Thailand

By Somnuk Tangtermsirikul, D.Eng. Professor School of Civil Engineering and Technology

Sirindhorn International Institute of Technology Thammasat University

Interesting Statistics about Concrete in Thailand

World Cement Consumption

Cement Consumption in Asia

17.8

48.0

Top 5 Countries

72.3

Year 2000 Unit : Million tons

581.0

99.6

China India Japan Korea Thailand

Cement Production in Asia

35.0

56.0

Top 5 Countries

72.0

110.0

Year 2003 Unit : Million tons

750.0

■ China ■ India □ Japan □ Korea (■ Thailand

Per capita consumption in Thailand in 2004

Cement + Fly ash : about 450 - 500 kg Concrete : about 1 m³

Growth : about 10-15% or more from 2003

Some World Records in Thailand

Klong Tha Dan Dam

- Highest amount of RCC utilization →
 5.5 million m³
- Highest amount of RCC placing in 1 day → 15,000 m³

Fly Ash

Highest effective utilization in concrete → 80% of total fly ash production

hlong Ta Dan Dam Project with 5.5 million m³ of RCC

80

Consumption/Production (%)

Computed based on annual production of 3 million tons

However, those are just in term of quantity. Still many problems regarding quality.

Central Inaliand

- Bangkok
- Nakornsawan
- Ratchaburi
- Lob-Buri
- Ayudtaya
- Samutsongkarm
- Pathum Thani

Seaside areas

- Samutprakarr
- Cholburi

Environmental condition	Classification	
	Number of	Porcont
	structures	Percent
Central Thailand	159	87.85
Seaside area	22	12.15
Total	181	100.00

7-year Surveys on Situation of Concrete Structures in Thailand

- Location : central and eastern parts of Thailand (different environment)
- Age of structures : from during construction until very aged ones
- Finding : Many problems on low quality structures

Problems

- Construction of new structures
- Already existing structures

Problems occurs in all Steps of Practice

- Analysis and Design
- Materials
- Construction
- Protection and Maintenance

Analysis and Design Problem

Strength design with no durability consideration

Material Problems

Self-restraint thermal crack

Use Concrete with Segregation

Drying Shrinkage

Alkali-Aggregate Reaction

Biological Degradation

Problems on Poor Construction

Plastic Shrinkage

Cracks due to Plastic Settlement

Early steel corrosion due to Carbonation (not enough concrete cover)

Steel Corrosion (too small concrete cover)

Maintenance Problems

Chloride Induced Corrosion (Early Maintenance Program is Required)

Chloride induced Steel Corrosion

Severe Steel Corrosion due to Carbonation

Incompatible repair material
Incipient Anode Problem

Picture from SIKA (Thailand)

Improper active crack repair using epoxy mortar with low deformability

Pictures from SIKA (Thailand)

Failure of Coating

Pictures from SIKA (Thailand)

 Swelling and debonding of the coating material due to moisture behind the coat

Solution

To obtain durable structures

- For New Construction
 - Good Analysis and Design (new PWCP design acts)
 - Good Materials (new TCA material spec.)
 - Good Construction (?)
 - Good Protection and Maintenance
- For Already Existing Structures*
 - Monitoring, Protection, Maintenance, Repair, Strengthening
 - * Not Today's topic

Analysis and Design

Design considering long term properties (durability, creep, fatigues, ductility), easiness of construction and maintenance

A new building acts enforcing both short term and long term properties of structures by Department of Public Works & Urban Planning (Effective in 2005)

Relation between value of deterioration and age of colum (Steel Corrosion Problem)

Structures in Cholburi

Central Inaliand

- Bangkok
- Nakornsawan
- Ratchaburi
- Lob-Buri
- Ayudtaya
- Samutsongkarm
- Pathum Thani

Seaside areas

- Samutprakarr
- Cholburi

Environmental condition	Classification		
	Number of	Porcont	
	structures	Percent	
Central Thailand	159	87.85	
Seaside area	22	12.15	
Total	181	100.00	

Chloride induced Corrosion

Structures in Bangkok

Carbonation induced steel corrosion

Carbonation induced steel corrosion

HETI SILS

Various types of Special Concrete launched by Ready-mixed companies

Low heat concrete
Marine concrete (Cl⁻ and sulfate resistance)
Sulfate resisting concrete
Frost resistance concrete
Self-compacting concrete
etc.

Extend Service Life

How long ?

Performance Based Analysis and Design of Concrete Mix Proportion (Computer Software for Mix Design)

At SIIT, Thammasat University

Sirindhorn International Institute of Technology

Thammasat University

Design of Concrete Mix Proportion

Examples of Computer Software for Performance Based Analysis and Design

For workability and strength design

A Workability Prediction Model for Fly Ash Concrete

<u>Others</u> - Creep

Factors affecting consistency and workability

Analytical factor Practical factor	γ	W _{fr}	S _{ta}	S _{tp}
sand to aggregate ratio	*		*	
Maximum size and gradation of aggregate	*		*	
Gradation of powders and aggregate	*	*	*	*
Size and fineness of powder		*		*
Shape and porosity of powder		*		*
Unit water content	*	*		
Powder content	*	*		*
Concrete temperature		*		
Chemical admixtures		*		*

Model Formulation

The slope of slump-free water content curve

· Concrete with more paste will have higher slump

Effect of void content

Free Water Content in Mixture (W_{fr})

Concept : water which has effect on workability is the water not restricted by all solid particles

Total water

Water restricted by powders $W_{rp} = \Sigma(\beta_{pi})W_{pi}$

> Water restricted by aggregates $\mathbf{W_{ra}}' = (\beta_s) \mathbf{W_s}' + (\beta_g') \mathbf{W_g}'$

Water Retainability of Powders

Powder will retain more water in and at the surface of the particles when it has larger surface area, porosity and irregularity (shape). For ash-type powders, higher LOI also results in higher water retainability. Higher temperature will increase water retainability of cementitious powders like cement, fly ash, rice husk ash, etc. but affects very little on non-reactive powder like limestone powder.

Water Retainability of Fly Ash LOI (δ), surface area (S_p), porosity, shape factor

Specific gravity (p)

Water Retainability of Aggregates

 $\beta_p = f$ (porosity, surface area)

 $\beta_{agg}' = f$ (surface area)

Additional free water due to filling effect (W_{aa})

• Fine particles of fly ash can fill in the voids among cement particles, driving out some additional free water

Filling Ability

Filling ability depends on

- Size : smaller fills easier
- Shape : spherical fills easier
- Content : more filler content (in this case fly ash is considered as filler) results in more possibility to fill (but not beyond the capacity of voids among cement).

Filling coefficient (F)

Smaller size

$$R' = 1 + 3\left(\frac{R-1}{\psi^{3.3}}\right)$$

 $a = 0.6 r^{0.25}$

Minimum Free Water Content Required for Initiating <u>slump (W₀)</u>

$$SL = \alpha_{SL} (W_{fr} - W_0)$$

Effective surface area

Coarse aggregates Fine aggregates Powder particles

 $\eta_a S_{agg} + \eta_p S_{pow}$

$$\mathbf{S}_{eff} \begin{cases} (\mathbf{S}_{pow}) \times \boldsymbol{\eta}_{p} f(\mathbf{S}_{agg}) \\ (\mathbf{S}_{agg}) \times \boldsymbol{\eta}_{a} f(\mathbf{V}_{pow}) \end{cases}$$

Powder particles contact on aggregate surface

Aggregate contacts can be disturbed by powder particles

Lubrication Effect

Air bubbles and spherical or semi-spherical properties of fly ash particles can introduce lubrication to other solid particles in the concrete mixture. This effect reduces friction among the solid particles and then reduces W_o .

Lubrication of interparticle friction

 $W_0' = Y_0$

Spherical particles - fly ash - Air bubbles

Lubrication coefficient of air bubbles

Lubrication Coefficient, $L = L_a \times L_p$

Lubrication coefficient of powder

Lubrication coefficient of air bubbles

$$\mathbf{L}_{\mathbf{a}} = \mathbf{1.81} \exp\left(\mathbf{3.54 \times 10^7 \times \frac{V_{\mathrm{air}}}{S_{\mathrm{ta}}}}\right) - \mathbf{0.84}$$

$$\mathbf{V}_{air} = \mathbf{f}\left(\mathbf{V}_{paste}, \frac{\mathbf{W}}{\mathbf{b}}, \boldsymbol{\varphi}, \mathbf{Loi}\right)$$

0.1 0.2 0.3 0.4 Tested Vair/Vp

Lubrication coefficient of cement replacing powder

Verifications

Comparison between the predicted and tested slump of concrete containing various type of fly ash Comparison between the predicted and tested slump of concrete containing various type of powder

Comparison between the predicted and tested slump of concrete with the application of air entraining agent

Use of Water-reducing Efficiency and Setting Time for Time-Dependent Slump Prediction

By

Somnuk Tangtermsirikul, D.Eng.

Sirindhorn International Institute of Technology Thammasat University

Water Reducing Efficiency (ϕ ') of WRA

quantity of water required to produce a flow diameter of 180 mm with 0.5% dosage of WRA

quantity of water required to produce a flow diameter of 180 mm without WRA

Water Reducing Efficiency (ϕ ') of WRA

Designation	on ASTM Type Base T		Trade Name	Water-reducing efficiency (WRE)
Lignosulfonate (I)	D	Lignosulfonate	Pozzolith 400R	0.20
Lignosulfonate (II)	D	Lignosulfonate	Plastiment R	0.13
Lignosulfonate (III)	D	Lignosulfonate	AS 247R	0.16
Naphthalene (I))	F	Naphthalene	Rheobuild 1000	0.34
Naphthalene (II)	F	Naphthalene	Rheobuild 1000	0.32
Naphthalene (III)	F	Naphthalene	Mighty MX	0.33
Polycarboxylic (1)	F	Polycarboxylic	Glenium [™] SP27	0.50
Polycarboxylic (II)	F	Polycarboxylic	Viscocrete	0.44
Polycarboxylic (III)	F	Polycarboxylic	Glenium TM SP27	0.38
Melamine	F	Melamine	Sikament FF	0.27

Initial Setting time of cement with WRA

- The normal consistency and the initial setting time were determined in accordance with ASTM C 187-98 and C 191-99.
- The dosage of WRA was selected at 0.5% by weight of cement, which is the same dosage as the test for water-reducing efficiency

Materials	ASTM type of WRA	Initial Setting Time
Cement only	-	1 hr 34 min
Cement with Lignosulfonate (II)	D	3 hr 35 min
Cement with Lignosulfonate (III)	D	4 hr 13 min
Cement with Naphthalene (II)	F	2 hr 06 min
Cement with Naphthalene (III)	F	2 hr 09 min
Cement with Polycarboxylic (II)	F	3 hr 17 min
Cement with Polycarboxylic (III)	F	2 hr 36 min

Verifications for Naphthalene

WRA	ASTM type	WRE	Setting time
Lignosulfonate	D	0.15 - 0.20	3.5 – 4.0 hrs
Naphthalene	F	0.30 - 0.35	about 2.0 hrs
Polycarboxylic	F	0.40 - 0.50	2.5 – 3.0 hrs
	•		•

W/b = 0.4 (No fly ash)

Verifications of Lignosulfonate

	25 -		•	Test (LignoII)
	20 -			- Model (LognoII)
cm)	15 -	(20% fly ash)	ж	Test (LognoIII)
) dun	10			• Model (LognoIII)
Slu	10 -	····		
	5 -	***		T ¹ (¹)
	0 -	· · · · ·	•	I ime (min)
	(0 50 100	150	l i i i i i i i i i i i i i i i i i i i

WRA	Setting time	WRE
Lignosulfonate II	3.6 hrs	0.13
Lignosulfonate III	4.2 hrs	0.16

Mixture: $\gamma = 1.2, W/b = 0.5$ WRA = 0.5%

Verifications of Polycarboxylic

	25			•	Test (PolyIII)
	20 -	(20% fly ash			- Model (PolyIII)
cm)	15 -	••••••••••••••••••••••••••••••••••••••		ж	Test (Poly II)
dun (10	**. *	×		Model (PolyII)
Slu	10 -		···. *		
	5 -				
	0 -	•	•		Time (min)
	0	50	100	150	

and a series of the second second second	and a serie allow and a	manufacture and man
WRA	Setting time	WRE
Polycarboxylic II	3.3 hrs	0.44
Polycarboxylic III	2.6 hrs	0.38

Mixture: $\gamma = 1.2, W/b = 0.4$ WRA = 0.5%

Verification of Initial and Time dependent Slump of Fresh Concrete

(No admixtures, Normal temperature)

Verification of Slump Loss of Fresh Concrete (No admixtures, High temperature)

A Compressive Strength Prediction Model for Fly Ash Concrete

MODEL FORMULATION

Relationships among w/b, CaO_{eff}, and f_c'(28 days)

 $f_c'(28 \text{ days}) = \alpha_1 \log(\text{CaO}_{\text{eff}}) + \alpha_2$

Effective Calcium Oxide Content in Binders

$$CaO_{eff} = \frac{(\%CaO_{c} \times W_{c}) + (\%CaO_{f} \times W_{f})}{100}$$

Effectiveness of calcium oxide in fly ash

$$\varphi = \frac{1 - e^{-\kappa(\% \text{CaO}_{f})}}{1 + e^{-\kappa(\% \text{CaO}_{f})}}$$

$$\kappa = 0.0048 \left(\frac{S_{\rm f}}{3000}\right)^{3.07} + 0.0245$$

 $\begin{array}{c} CaO_{eff} \\ \%CaO_{c} \\ \%CaO_{f} \\ W_{c} \\ W_{f} \end{array}$

=

=

=

=

- effective unit calcium oxide content in concrete (kg/m³)
 calcium oxide content in cement (% by weight)
 calcium oxide content in fly ash(% by weight)
 cement content in concrete (kg/m³)
- fly ash content in concrete (kg/m³)

Effectiveness of Fly Ash

Filling Effect of Fly Ash on $f_c'(28 \text{ days})$

F = Filling Coefficient **R** = Specific surface area $S_c =$ Specific surface area of cement $a = 0.6 r^{0.25}$

 $S_c =$ Specific surface area of filling powder **r** = replacement ratio of fly ash Ψ = Shape factor

(Tanatamaginikul at al 2001)

Filling Effect of Fly Ash on f_c'(28 days)

Filling Effect of fly ash on $f_c'(28 \text{ days})$

Filling Effect of Fly Ash on f_c'(28 days)

Effect of ratio of paste to void volume

Effect of LOI of Fly Ash

Effect of Entrained Air

Same air content BUT gives different effect on $f_c'(28 \text{ days})$

$$\xi = \frac{V_{air}}{V_{paste}}$$

Effect of Entrained Air

$$\chi_{air} = 1 - 2.35 \xi^{1.70}$$

28-DAY COMPRESSIVE STRENGTH MODEL

for Conventional Concrete

$$f_{c}'(28 \text{days}) = \alpha_{1} \log(\text{CaO}_{\text{eff}}) + \lambda_{f} \alpha_{2} [\chi_{\gamma} \chi_{\text{LOI}} \chi_{\text{wr}} \chi_{\text{air}}]$$

$$\begin{split} \lambda_{\rm F} &= \frac{1}{1 + (0.25 \Psi^{-4.91}) \tan^{-1}(357 {\rm F}^{3.24})} \\ \chi_{\gamma} &= \begin{cases} 1 - [10.64 ({\rm w}/{\rm b})^{3.68} + 2.38] \cdot (\gamma_{\rm opt} - \gamma)^{2.21}; \gamma \leq \gamma_{\rm opt} \\ 1 - \frac{[11.97 ({\rm w}/{\rm b})^{1.12}] \cdot (\gamma - \gamma_{\rm opt})}{7.57 + \exp[1.83 (\gamma - \gamma_{\rm opt})]} ; \gamma > \gamma_{\rm opt} \end{cases} \\ \chi_{\rm LOI} &= 1 - 155.75 \ [\exp(-0.15 \cdot {\rm CaO_f})] \ \eta^{1.66} \\ \chi_{\rm air} &= 1 - 2.35 \ \xi^{1.70} \end{cases} \\ \end{split}$$

/erifications for Conventional Concretes Model

Concrete containing original fly ash

Verifications for Conventional Concretes Model

Concrete with <u>classified fly ash</u> ($\Psi = 1.05$) Concrete with <u>ground fly ash</u> ($\Psi = 1.20$)

Verifications for Conventional Concretes Model

Air Entrained Concrete

Predicted Strength (MPa)

High LOI Fly Ash Concrete

Predicted Strength (MPa)

Compressive Strength Development Model $\phi(t) = \frac{f_c'(t)}{f_c'(28 \text{days})}$ Strength Ratio

Factor Effecting Strength Development of Concrete

SiO₂/CaO

w/b

Filling Effect of fly ash

Effect of water-reducing admixture

Verifications for the Strength Development Model

Verifications for the Strength Development Model

Verifications for the Strength Development Model

PERFORMANCE BASED PREDICTION MODEL

:Temperature of Concrete

Total Heat Generation of Concrete

Specific Heat

$$Q = \int H dt = s \rho \Delta T$$

- s : Specific Heat
- ρ : Specific Gravity
- H : Heat Generation rate per unit

volume

T : Temperature of concrete

Temperature of Concrete

Heat Conductivity

Heat Transfer Coefficient

$$s\rho\left(\frac{dT}{dt}\right) = K\left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2}\right) + H$$

$$\left(-k\nabla^{2}T + H\right)n = m\left(T - T_{ext}\right)$$

- K : Heat conductivity
- H : Heat generation rate per unit volume
- n : Outward unit vector normal to the surface
- m : Heat transfer coefficient

Temperature Gradient of Concrete

Total Heat Generation of Concrete

$Q(t) = Q_{C_3S}(t) + Q_{C_2S}(t) + Q_{C_3A}(t) + Q_{C_4AF}(t) + Q_{C_3AET}(t) + Q_{C_4AFET}(t) + Q_{FA}(t)$

Cumulative Heat Generation of Ettringite and Monosulphate

- Cumulative Heat Generation of Cement Compounds
- Cumulative Heat Generation of Fly Ash

Heat Generation of Ettringite and Monosulfate Formation Reactions

Heat Generation of Cement Degree of Hydration $Q_i(t) = \frac{\alpha_i(t)}{100} \cdot Q_{i,max} \cdot W_i$ 200 $QC_3A = 190 \text{ kcal/kg}$ QC3A 180 the compound) (160 140 120 100 80 60 QC3S Q_i (kcal/kg of - QC4AF \rightarrow QC2S $QC_3S = 105 \text{ kcal/kg}$ $QC_4AF = 85 \text{ kcal/kg}$ $QC_2S = 50 \text{ kcal/kg}$ 40 20

For C_3S and C_2S For C_3A and C_4AF

20

40

60

Degree of Hydration, α_i (%)

0

0

$$\mathbf{w}_i = \mathbf{w}_{io}$$

80

 $W_i = W_{i0} - W_{iFT} - W_{iMN}$

100

Heat Generation of Fly Ash

Degree of Pozzolanic Reaction

Fly Ash Content

$$Q_{FA}(t) = \frac{\alpha_{poz}(t)}{100} \cdot Q_{FA,max} \cdot w_{fa}$$

At max degree of pozzolanic reaction

 $Q_{FA,max} = 36 + 0.63 \cdot \% CaO_{f}$ Calcium Oxide in Fly Ash

Thermal Properties

Specific Heat Model

$$c(t) = w_{g}c_{g} + w_{s}c_{s} + w_{fw}(t)c_{w} + w_{uc}(t)c_{c} + w_{ufa}(t)c_{fa} + w_{hp}(t)c_{hp}(t)$$

c(t) : specific heat of concrete at any time. c_i : specific heat of i-th component of concrete w_i : weight of i-th component of concrete

$$\mathbf{w}_{uc}(t) = (1 - \alpha_{hy}(t)) \mathbf{w}_{c0}$$
$$\mathbf{w}_{ufa}(t) = (1 - \alpha_{poz}(t)) \mathbf{w}_{fa0}$$

Thermal Coefficients	Coarse aggregate (Lime Stone)	Fine aggregate (Sand)	Water	Cement	Fly Ash	Air	Hydrated Product *
Specific Heat (kcal/kg/ °C)	0.20	0.19	1.0	0.18	0.17	0.24	0.13

* Back analysis

A SIID A F. A maniagn Society of Heat Defrigonating and Air Conditioning Engineering

Apparatus for testing specific heat

Data Logger

Verification of Specific Heat Model

Thermal Conductivity Model

$Z(t) = n_{g} z_{g} + n_{s} z_{s} + n_{fw}(t) z_{w} + n_{uc}(t) z_{c} + n_{ufa}(t) z_{fa} + n_{hp}(t) z_{hp}$

$$\label{eq:conductivity} \begin{split} Z(t) &: conductivity of concrete at any time. \\ Z_i &: conductivity of i-th component of concrete \end{split}$$

 n_i : volume metric ratio of i-th component of concrete

$$n_{uc}(t) = (1 - \alpha_{hy}(t))n_{c0}$$

Thermal Coefficients	Coarse aggregate (Lime Stone)	Fine aggregate (Sand)	Water	Cement	Fly Ash	Air	Hydrated Product *
Heat Conductivities (Kcal/m.day.C)	20.50	7.50	12.44	0.62	1.16	0.54	23.5

11(

* Back analysis

ASHDAE, American Society of Heat Defrigorating and Air Conditioning Engineering

Thermal Conductivity Test

Verification of Thermal Conductivity Model

Thermal conductivity of w25r0.

Thermal conductivity of w40r0.

Total Heat Generation of Concrete

Specific Heat

$$Q = \int H dt = s \rho \Delta T$$

- s : Specific Heat
- ρ : Specific Gravity
- H : Heat Generation rate per unit

volume

T : Temperature of concrete

Temperature of Concrete

Heat Conductivity

Heat Transfer Coefficient

$$s\rho\left(\frac{dT}{dt}\right) = K\left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2}\right) + H$$

$$\left(-k\nabla^{2}T + H\right)n = m\left(T - T_{ext}\right)$$

- K : Heat conductivity
- H : Heat generation rate per unit volume
- n : Outward unit vector normal to the surface
- m : Heat transfer coefficient

Temperature Gradient of Concrete

temperature calculation

Output interface for temperature calculation

🔄 Input and Results

Verification by Adiabatic Test Results

Adiabatic temperature rise of Portland cement mixture (Suzuki et al. 1990)

Verification by Adiabatic Test Results

8

6

Age of Paste (days)

2

0

fly ash replacement (Suzuki et al. 1990)

Verification of the Program

Temperature rise in a footing (38.4×8.4×4.75 m)

Autogenous Shrinkage Model

Concrete as a 2-Phase Material

Paste phase undergoes shrinkage Aggregate phase resists the shrinkage

Model for Paste Shrinkage (ϵ_{p0})

$$\varepsilon_{as}(t) = \varepsilon_{as,chem}(t) + \varepsilon_{as,phy}(t) - \varepsilon_{exp}(t)$$

$$\epsilon_{as,chem}(t) = \left(A \cdot m_{c_{3}A} \cdot \alpha_{c_{3}A}(t)\right) + \left(B \cdot m_{c_{4}AF} \cdot \alpha_{c_{4}AF}(t)\right) + \left(C \cdot m_{c_{3}s} \cdot \alpha_{c_{3}s}(t)\right) + \left(D \cdot m_{c_{2}s} \cdot \alpha_{c_{2}s}(t)\right) + \left(E \cdot m_{FA} \cdot \alpha_{FA}(t)\right) + \left(E \cdot m_{FA} \cdot \alpha_{FA}(t)\right)$$
Capillary Surface Tension Stress
$$\epsilon_{as,phy}(t) = \frac{2\gamma \cdot A_{s}(t)}{r_{ave}(t)} / E_{s}$$

Effect of Types of Cement on Autogenous Shrinkage of Paste

Effect of Fineness of Cement on Autogenous Shrinkage of Paste

Effect of Water to Binder Ratio on Autogenous Shrinkage of Paste

Effect of Curing Temperature on Autogenous Shrinkage of Paste

Effect of Type of Fly Ash (SO₃ content) or Autogenous Shrinkage of Paste

1

Effect of Fly Ash Content on Autogenous Shrinkage of Paste

Age (days)

Model for Aggregate Restraint (E_a)

Concept :

Stress is transferred at the aggregate contacts

Density Function For Contact Angle

 $\Omega\left(\theta
ight)$

Constitutive Relation for Normal Directio

contact surface before deformation

 f_{θ}

$$\sigma_{c\theta} = \underbrace{E_{c}'}_{2.5 \times 10^{5} \text{ kgf/cm}^{2}}$$

Stress in Direction Parallel to Contact Plan

$$f_{\theta} = \mu \sigma_{c\theta}$$

Coefficient of Contact Friction of Aggregate Regarding Effect of Water Lubrication

For Coarse Aggregate

For Fine Aggregate

0.36 for dry crushed limestone

0.31 for dry river sand

Effect of Water Content on Aggregate Contact Area

Model for Aggregate Stiffness

(Mixtures of Coarse and Fine Aggregates)

Stress Contributed by Each Materials

Stress Produced by Coarse Aggregate

Stress Produced by Fine Aggregate

$$\sigma_{\rm s} = (1 - n_{\rm g}).\sigma_{\rm s-s}$$

Total Stress of the Combined Aggregates

$$\begin{split} \sigma_{a} &= \sigma_{g} + \sigma_{s} &= \sigma_{g-g} + \sigma_{s-s} \\ \sigma_{a(z)} &= \int_{0}^{\pi/2} \Omega(\theta) \cdot (\sigma_{c\theta(g)} \cdot \cos\theta + f_{\theta(g)} \cdot \sin\theta) \cdot A_{c\theta(g)} \cdot d\theta \\ &+ \int_{0}^{\pi/2} \Omega(\theta) \cdot (\sigma_{c\theta(g)} \cdot \cos\theta + f_{\theta(s)} \cdot \sin\theta) \cdot A_{c\theta(s)} \cdot d\theta \\ \sigma_{a(y)} &= \int_{0}^{\pi/2} \Omega(\theta) \cdot (\sigma_{c\theta(g)} \cdot \sin\theta - f_{\theta(g)} \cdot \cos\theta) \cdot A_{c\theta(g)} \cdot d\theta \end{split}$$

+
$$\int_{0}^{\pi/2} \Omega(\theta) \cdot (\sigma_{c\theta(s)} \cdot \sin \theta - f_{\theta(s)} \cdot \cos \theta) \cdot A_{c\theta(s)} \cdot d\theta$$

Effect of Particle Interference on Contact Area of Coarse Aggregate

Particle interference caused by fine aggregate reduces the contact area of coarse aggregate

Test and Analytical Results of Autogenous Shrinkage of No-Fine Concrete (Effect of Coarse Aggregate Content)

Test and Analytical Results of Autogenous Shrinkage of Mortar (Effect of Fine Aggregate Content)

11 12 12 12

PERFORMANCE BASED PREDICTION MODEL :Carbonation of Fly Ash Concrete

Output interface for carbonation prediction

lacktriction Simulation & Water Migration

<u>_ D ×</u>

CH in mortar specimen (Author's data) at 28 days

(ii) Verification of carbonation depth (real environment)

- Carbonation depth was the distance from concrete surface to center of the innermost concrete element that has the pH value less than 9

(iii) Verification of carbonation depth (accelerated environment)

3. Mix Design of Concrete Subjecting to Carbonation

Proposed Three Zones based on Severity of Environment

Design Chart for Severe Environment

PERFORMANCE BASED PREDICTION MODEL :Chloride induced steel corrosion

Conceptual Service Life Model of Steel in Concrete

Simulation of

Chloride-Induced Corrosion of Steel in Concrete

Models :

- Movement of chloride and water vapor (Fick's second law of diffusion)
- Chloride binding capacity
- Carbonation
- Cyclic wetting and drying
- Ion adsorption and surface condensation
- Ion exchange
- Depassivation criteria

Chloride Binding

Chlorides in Concrete

Relationship between fixed chloride ratios of C_3A and C_4AF and their degrees of hydration

Relationship between fixed chloride content of hydrated products and total chloride content

Fixed chloride content of hydrated product,

Program of Chloride Binding Capacity

💐 Output

• 🗤 🔀 🖻 🗳 🔍 🏙 💶 🗷

Material case (MC) = 2 Data number (N) = 1 Binder content 1.394 g/cm^3 Ettringite, mono, CAH, CAFH .411	Total chloride content (Test) Fixed chloride content (Test) Fixed chloride content (Model)	1.42% by wt of binder.73% by wt of binder.74% by wt of binder	Bun <u>Again</u> E <u>x</u> it
CSH .684 Diff. hydrated C3A / 2 .008 Diff. hydrated C4AF / 2 .012 Binders Major Mass of Mass for Remain compound each ettringite and compound monosulfo. formation	Time at → Time at = Submersion end start period (dag 29 1 28 Percentage Hy of reaction {%}	n y) drated mass Fixed CL by of each hydrated mass of compound each compound	Fixed CL by hydrated mass of each compound
(g/cm^3) (g/cm^3) (g/cm^3) C3A .116 .041 .075 C4AF .136 .055 .08 C3S .79 C2S .244 Fly ash 0	89.4 68.2 21.2 80.2 50.2 30 83.7 78 0	(g/cm^3) (g/cm^3) Physical Chemical .016 .0017 .0011 .024 .0011 .0008 .661 .0042 .19 .0016 0 0	(% by wt of binder) Physical Chemical .121 .08 .076 .056 .299 .113 0
Summation	2	Summation Summation	Summation
氏 เริ่ม - Start 🛛 🖭 Microsoft PowerPoint 🔍 Explorin	g - Dr. Somnu] 📸 Project1 - Microso	oft V 5. Output	⊗ En ⊘ €: 1 9 2:1 8

Experimental Setup of Chloride Binding Capacity

Start of submersion at time T,

End of submersion at time T

Calculation:

Total Cl⁻ = {[C_i]- [C_f]} * V Free Cl⁻ is known from Expressed Pore Solution So, Fixed Cl⁻ = Total Cl⁻ - Free Cl⁻ *Chloride binding capacity* = Fixed Cl⁻ / Total Cl⁻

Mix Designation

Cement paste

C1: Type I cement, w/c=0.30 C2: Type I cement, w/c=0.40 C3: Type I cement, w/c=0.50 C4: Type III cement, w/c=0.40 C5: Type V cement, w/c=0.40

<u>Cement - fly ash paste</u> Cement+Fly Ash A (Low calcium)

FA1: Type I cement + Fly ash A (30%), w/c=0.40
FA2: Type I cement + Fly ash A (50%), w/c=0.40
FA3: Type I cement + Fly ash A (70%),w/c=0.40 *Cement+Fly Ash B (High calcium)*FB1: Type I cement + Fly ash B (30%), w/c=0.40
FB2: Type I cement + Fly ash B (50%), w/c=0.40

FB3: Type I cement + Fly ash B (70%), w/c=0.40

Curing and submersion period

Curing period: 1, 7 and 28 day Submersion period: 28, 56 and 91 day

Experiment Details (External Chlorides)

3.00 % of Cl⁻ for saltwater

Measurement of [OH⁻] by pH meter

Pore-expressed method

Measurement of [Cl⁻] by potentiometric titration with AgNo₃ solution and chloride ion selective electrode

Model of Chloride Binding Capacity of Fine Aggregate and Finer Aggregate

Verification of CBC Model (External Chlorides) Sumranwanich et.al.

Cement paste

Cement-fly ash paste

Age at start of submersion: $t_s = 1, 7, 28$ daysSubmersion period: t_e - $t_s = 28, 56, 91$ days

Verification of CBC Model (External Chlorides)Arya et. al.Cement pasteMortar and concrete

Age at start of submersion:

t_s = 2, 28, 84 days

Submersion period:

 t_e - t_s = 28, 56, 84 days

Age at start of submersion:

 t_s = 28 days Submersion period: t_e - t_s = 28, 91, 182, 365 days

Chloride Diffusion Coefficient

Model of Time-Dependent Chloride Diffusion Coefficien

Pore Structures (Average pore diameter and Total porosity)

Average Pore Diameter of Paste

Average Pore Diameter of Paste (continued)

 $\times \left(1 - \left(\frac{f}{b}\right) \times \left(-0.68 \times \left(\frac{f}{b}\right) + 1.45\right)\right) \quad \times \left(-1.5 \times \frac{\alpha_{ave}(t)}{100} + 2\right)$

Total Porosity of Paste

Total Porosity of Paste (continued)

(1000

<u>Model of total porosity</u>, n(t)

$$n(t) = \left(23.9 \times \ln\left(\frac{W}{b}\right) + 77.4\right) \times \frac{27.6}{26.5 + e^{\left(0.86 \times (W/b)^{-1.43} + 1.2\right) \times \frac{\alpha_{ave}(t)}{100}}} \times \left(\frac{1602}{F_c^{1.02}} + 0.57\right) \times \left(\left(\frac{C_3A}{100}\right)^{-0.065} - 0.21\right) \times \left(-0.25 \times \left(\frac{f}{b}\right)^{0.5} + 1\right)$$

Chloride condensation in submerged zone

Chloride Condensation in Surface Layer

$$\begin{split} & \text{Model of Time-Dependent Ion Adsorption} \\ & F_{ad}(1,t) = \left(0.0000034 \times B^{0.443}\right) \times R_p^{0.05} \times \left(-0.35 \times C_{f,b}^{0.5}(1,t) + 1\right) \times \frac{n(t)}{100} \times e^{-C_{f,b}(1,t)} \\ & \text{where, } F_{ad}(1,t) = \text{Ion adsorption flux of surface element, mol/(cm²/day)} \\ & C_{f,B}(1,t) = \text{Free chloride content of surface element, \% by wt of binde} \\ & B = \text{Binder content (kg/m³)} \quad R_p = \text{Paste ratio} \\ & n(t) = \text{Porosity, \%} \end{split}$$

Chloride condensation due to Carbonation

Chloride condensation due to effect of wetting & drying

Effect of Cyclic Wetting and Drying

Environment Cl⁻ concentration

Ion Equilibrium

Mechanism of Ion Exchange

Depassivation Criteria

Depassivation Criteria

- 1. Chloride corrosion threshold
 - Depend on the hydroxyl concentration in pore solution
 - $[CI^-]_{cr} = 0.1716 [OH^-]^{0.7619}$

where,

 $[CI]_{cr}$ = critical chloride concentration, mol/l $[OH^{-}]$ = hydroxyl concentration, mol/l

- 2. Adequate water supplied
 - Optimum relative humidity is 70-80%
- 3. Oxygen provided

<u>File</u> <u>Material Data</u>	nvironmental Data	<u>R</u> un <u>O</u> utput <u>H</u> elp		1	16 16
Specimen Details	É	Properties of Cement			
ength of investigation [cm	Silicon Oxide, SiO2	%		
epth of covering	cm	Calcium Oxide, CaO	%		
-	le l	Alumina Oxide, Al2O3	%		
Mix Proportion (per 1 m [^]	3 of concrete)	Ferrous Oxide, Fe2O3	%		
Cement	kg/m^3	Sulphur Oxide, SO3	%		
ily ash	kg/m^3				
and	kg/m^3	Fineness	cm^2/g		
Rock	kg/m^3				
Vater	kg/m^3				
	1	Properties of Fly Ash			
<u>k</u>	<u>C</u> lear All	Silicon Oxide, SiO2	%		
		Calcium Oxide, CaO	%		
		Fineness	cm^2/g		

Input interface for calculation of chloride distribution (I)

_ 8

File	Material Data	Environmental Data	<u>R</u> un	Dutput	Help

_8

.....

nvironmental Case		
EC=1 No chloride inside and outside of concrete	<u>k</u>	
C EC=2.1 Chlorides move out from concrete submerg		
C EC=2.2 Chlorides move out from concrete submerg	<u>Clear All</u>	
C EC=2.3 Chlorides move out from concrete in atmos		
C EC=3.1 Chlorides move into concrete submerged in		
C EC=3.2 Chlorides move into concrete under tidal zo	one (Equally wetting and drying)	
C EC=3.3 Chlorides move into concrete under splash		
C EC=3.4 Chlorides move into concrete under atmosp		
hloride and Hydroxide Ions		-
Initial chloride content in concrete	% by wt of concrete	
Chloride concentration of saltwater	mol/l	
Initial hydroxide concentration in concrete		out interface for calculation of
ime and Temperature	- Contract	chloride distribution (II)
Wetting period	day	
Drying period	day	
Condition at start of cyclic wetting and drying (Please type "wet" or "dry")		
Time at start of submersion	day	
Temperature	degree celcius	

NACKA NEN 23.

Simulation of Chloride Profile of Cement-Fly Ash Mortai (Internal chloride)

Simulation of Chloride Penetration in Concrete (External chloride)

Effect of water to cement ratio on depassivation time

Effect of saltwater concentration on depassivation time

Effect of depth of concrete cover on depassivation time 1,000 Depassivation time (day) Depth of concrete cover (cm)

Depassivation time of different environment

Environmental condition

Durability of Fly Ash Concrete under Sulfate Attack

Sulfate Attack

 $CSH_2 + NH$

 $C_6AS_3H_{32}$

C6A53H32

 $C_{6}AS_{3}H_{32} + CH$

(1)

(2)

(3)

(4)

1. Mechanisms of NS Attack

CH+NS+2H $C_4AH_{13}+3CSH_2+14H$ $C_4ASH_{12}+2CSH_2+16H$ $C_3A+3CSH_2+26H$

Sulfate Attack

2. Mechanisms of MS Attack

Appropriate percent replacement of thy ash in sultate environment

NS, Expansion

Conclusion

- To obtain durable structures
- For New Construction
 - Good Analysis and Design (new PWCP design acts)
 - Good Materials (new TCA material spec.)
 - Good Construction (?)
 - Good Protection and Maintenance
- For Already Existing Structures*
 - Monitoring, Protection, Maintenance, Repair, Strengthening

The End

Thank you for your attention