

Material properties

- 1. Odour
- 2. Taste
- 3.
- 4. Thermal conductivity
- 5. Electrical conductivity
- 6. Density
- 7. Solubility
- 8.

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Element

Mercury (Hg)

Definition: **Element** An element is a material, which can not be separated by chemical techniques.

found elements.

<text><section-header><image><image>

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Metal bond

Most of all elements are metals. More than 50% of the main group elements of the PSE and all **transition elements** are metals!

Properties of Metals

- · Thermal and electrical conductivity
- Ductility
- Metallic luster

orschungszentrum Karlsruhe der Helmholtz-Gemeinschaft			Â	FH Karlsruhe
	Typical	Fluid Indie	cators	S S
Indikatør	Farbe der sauren Form	pH-Bereich des Farb- umschlags	pK _{1n}	Farbe der basischen Form
Thymolblau	rot	1,2 bis 2.8	1.7	gelb
Methylorange	rot	3.2 bis 4.4	3.4	gclb
Bromphenolblau	gelb	3.0 bis 4.6	3.9	blau
Bromkresolgrün	gelb	3.8 bis 5.4	4.7	blau
Methylrot	rot	4.8 bis 6.0	5.0	gelb
Bromthymolblau	gelb	6.0 bis 7.6	7.1	blau
Lackmus	rot	5.0 bis 8.0	6.5	blau
Phenolrot	gelb	6.6 bis 8.0	7.9	rot
Thymolblau	gelb	8.0 bis 9.6	8.9	blau
Phenolphthalein	farblos	8.2 bis 10.0	9.4	pink
Alizaringelb R	gelb	10.1 bis 12.0	11.2	rot
Alizarin	rot	11.0 bis 12.4	11.7	violett

For in d	schungszent er Helmholtz	rum Karlsru -Gemeinsc	F	H Karlsruhe		
Grenz	Ana werte für die chemi	alysis	of cor	ncrete.	corrosive	Water
Chemisches Merkmal	Referenz- prüfverfahren	XAT	XA2	EAX		
Grundwasser						
SO ¹ ng/l in Wasser	EN 196-2	≥ 200 und ≤ 600	> 600 und ≤ 3000	> 3000 und \$ 6000		
pH-Wert	150 4316	\leq 6,5 ond \geq 5,5	< 5,5 und ≥ 4,5	< 4,5 und > 4,0	DIN EN 20	6-1 allows
CO ₂ mg/l angreifend	PHEN 13577	≥ 15 und ≤ 40	> 40 und ≤ 100	> 100 bis Jur Sättigung	analysis o	f Concrete-
NH ⁺ ₆ mg/3	150 7150-1 oder 150 7150-2	≥ 15 und ≤ 30	> 30 und ≤ 60	> 60 und ≤ 100	corrosive	Water at
Mg ²⁺ mg/1	150 7990	≥ 300 und ≤ 1000	> 1000 und ≤ 3000	> 3000 bis rur Sättigung	Construct	ion site.
Boden						
SO ²⁻ mg/kg insgesamt ¹⁰	EN 196-2 ²¹	$\stackrel{\geq}{_{\scriptstyle \leq}} 2000 \text{ und} \\ \stackrel{\leq}{_{\scriptstyle \leq}} 3000 \stackrel{\chi_{\rm I}}{_{\scriptstyle \rm I}}$	$> 3000^{-30}$ und $\leq 12,000^{-30}$	> 12,000 und ≤ 24,000		
Säuregrad in ml/kg	DIN 4030-2	> 200 Baumann-Gully	in der Praxis nicht anzutreffen			
1) Tonböden mit einzestuft wer	einer Durchlässigkei den	t von weniger als 10	0 ⁶ m/s dürfen in ei	në njëdrigere Klasse		
Das Prüfverfal darf statt desi hierfür vorhan	rren beschreibt die A en angewandt werde den ist.	uslaugung von SO ₂ n, wenn am Ort der	durch Salzsikure;) Verwendung des B	Nasserauslaugung etons Erfahrung		
¹¹ Falls die Gefal Trocknen und 3000 mm/km	r der Anhäufung von Durchfleuchten oder of 2000 me /ke num	Sulfationen im Beb kapillares Saugen - umindern	on – zurückzuführen besteht, ist der Gre	auf wechseindes nowert von		

FH Karlsruhe

Carbonation of reinforced concrete The reaction of the CSH-phases with CO₂ is called CARBONATION

The Ca(OH)₂ (approx. 20 mass-%) which is build up by the hydration of cement and KOH & NaOH in the pore solution are responsible for the pH of approx. 12.3 to 13 of the concrete.

$Ca(OH)_2 + CO_2 + H_2O \Rightarrow CaCO_3 + 2 H_2O$

Reasons for damages by carbonation •Low cement content •Minor dimension of cover concrete

•CO₂-content of the air

•Additional pollutants (NO, NO₂, NO₃) •Insufficient manufacture of th concrete

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Solubility During a dissolution process, we there is a competition regarding the formation of bonding between - the bonding between the solid phase molecules. - the solvent and the molecules of the solid phase (hydrogen bonding) - the solvent molecules (hydrogen bonding)

