July 15th, 2004.

Creation of virus-binding proteins (VBPs) for removal of pathogenic viruses in water

[forseeing new technology for virus removal from water]

Prof. Tatsuo Omura Department of Civil Engineering, Graduate School of Engineering, Tohoku University

1

Photograph of *Norovirus* by Immuno-electron microscopy (IEM)

Configuration of viruses

Waterborne pathogenic viruses

Family	Genus	Species	Main symptoms
Picornaviridae	Enteroviruses	Polioviruses	Infantile paralysis
		Coxsackie A	Respiratory
		Viruses	disease
		Coxsackie B	Epidemic
		Viruses	myalgia
		ECHO viruses	Vomiting, Diarrhea
		Enteroviruses	Vomiting, Diarrhea
	→ Hepatovirus	→ Hepatitis A virus	Hepatitis
Reoviridae	→ Reovirus	→ Reoviruses	Diarrhea, Fever
	Rotavirus	→ Rotaviruses	Gastroenteritis
Astroviridae	→ Astrovirus	Human astroviruse	s Gastroenteritis
Caliciviridae	Calicivirus	Human calicivirus	es Gastroenteritis
	 Noroviruses 	→ Norwalk virus	Gastroenteritis
	Sapoviruses	→ Sapporo virus	Gastroenteritis
Adenoviridae	→ Mastadenovirus	Human adenovirus	s Gastroenteritis, Conjunctivitis
Unclassfied		Hepatitis E virus	Hepatitis

Number of viral isolates from Human in Japan (1990-2003)

4

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

Infectious Agents Surveillance Report

Backgrounds

Pollution of water environment with viruses • Viruses are detected from various water samples

Increasing in viral infectious diseases
Population explosion, urban congestion, water shortage, and so on might be main factors.

Difficulty in removing and inactivating viruses • too small to be removed in filtration process • high tolerance to chlorine

New approach for virus removal is need to be developed

New technology for virus removal

- Viruses are well captured by activated sludge flocs
- Proteins of activated sludge bacteria play an important role in the adsorption

New technology for virus removal

Identification of VBPs

Identification of VBPs

Isolation and characterization of VBPs

- Cultivation of activated sludge bacteria
- Extraction of bacterial proteins with urea
- VBP isolation with affinity chromatography
- Evaluation of virus binding ability of VBPs with ELISA
- Estimation of molecular weight of VBPs with SDS-PAGE
- Evaluation of net surface charge of VBPs with ion exchange chromatography

Identification of VBPs

- Separation of VBPs with 2-dimensional electrophoresis
- Determination of N terminal amino acid sequences
- Homology search for amino acid sequences

Extraction of bacterial proteins

9

Affinity ligand Poliovirus NH2-DNPASTTNKDKL-COOH type 1 (Hogle, J. et al., 1985) igand (a part of vira capsid protein) **Protruding part responsible for** antigen-antibody interaction

11

- : Impurities
 - : carrier (NHS activated)
 - : Ligand (a part of viral capsid protein
- Start buffer: Tris-HCI
 (2mM, pH8.0)

Evaluation of virus binding ability of VBP with ELISA

(rabbit anti-mouse antibody)

Evaluation of virus binding ability of VBP with ELISA

 PV1 was added to VBP-immobilized well.
 PV1 was not added to VBP-immobilized well.

Evaluation of virus binding ability of VBP

Estimation of molecular weight of VBP with SDS-PAGE

VBP Marker

Evaluation of net surface charge of VBP with ion exchange chromatography

- : Anion exchange chromatographic profile of VBPs
- : Cation exchange chromatographic profile of VBPs
- : Conductivity

Evaluation of net charge of viral capsid peptide in affinity column

 Poliovirus capside peptide is negatively charged (NH₂-DNPASTTNKDKL-СООН)

Interaction between VBPs and viral capsid peptide

Carrier

Viral capsid peptide

Separation of VBP with 2-dimensional electrophoresis

Determination of amino acid sequences of VBPs

Spot Number	N -	te	rmi	nu	S				•	di	re	cti	on	01	fa	na	lys	5								
	1				5					10					15					20					25	
1	А	V	V	Y	D	Κ	D	G	Т	S	F	D	I	Y	G	R	V	Q	А	Ν	Y	Y				
2	V	D	F	Η	G	Y	F	R	Ρ	Q	V	G														
3	М	D	Х	Q	Е	D	Х	А																		
4	А	D	Y	S	G	D		Η	Κ	Ν	D	Y	Κ	W	F	Q	F	Ν	L	М	G	Т	Х	D	Х	L
5	G	D	А	F	S	Y	А	Κ	G	S	Х	Т	G	А	Н	Т	Κ	S	D	Y						
	1				5					10					15					20					25	
A: alanine	e, ∖	/: v	'ali	ne,	Y	t t	yro	sin	e,	D:	asp	art	ic	aci	id,	K:	ly	sin	e,	G:	gly	cir	n, T	F: 1	thre	en i
F: phenyla	alar	ine	e, I	: i	SO	leu	cine	e,	R:	arg	ini	ne,	Q:	g	luta	amin	ne,	N:	as	par	agi	ne,	H:	h	sti	din
M: methior	nine	e, E	: g	glut	ami	ic a	acio	d,	W:	try	pto	pha	ın,	L:	leu	ucin	ne,	Χ:	no	nid	ent	ifi	abl	le.		

Homology search of VBP sequences

Homology search of the determined amino acid sequences of VBPs was conducted against all amino acid sequences (more than 1.6 million sequences) in protein data bases (DAD, PRF, PIR, Swiss-Prot) with the Blast program provieded by DNA Data Bank of Japan on the web.

DAD: DNA Data Bank of Japan, Amino Acid Sequence Database PRF: Protein Research Fundation (Japan) PIR: Protein Identification Resource, (Japan, USA and Europe) SWISS-PROT (Switzerland) PDB: Protein Data Bank (USA)

Homology search of amino acid sequences of VBPs

Spot	Number	Molecular	Number of proteins that	Proteins that p	provoke the	highest ho	mology
Number	analyzed residue	VBPs (kDa)	have more than 80 % homology	Name of protein	number of residue	Homology	The site with high homology
1	22	75	5	Aeromonas hydrophila outer membrane protein	355	90	21-42
4	26	25	2	Vibrio cholerae outer membrane protein OmpK protein	296	81	51-77

VBP cloning and evaluation of virus binding protein of VBP clone

VBP cloning

Isolation of VBP gene

- Construction of DNA probe
- -Construction of DNA library for activated sludge bacteria
- Colony hybridization

VBP cloning

- Construction of a vector for VBP cloning
- VBP expression and purification

Evaluation of virus binding ability of VBP clone

- ELISA

25

Construction of DNA probe

Letters in red are probe regions

²⁷ Construction of DNA library for activated sludge bacteria

pUC118 with extracted genomic DNA

Construction of DNA library for activated sludge bacteria

DNA library for activated sludge bacteria was used for isolating VBP genes with colony hybridization.

Construction of DNA library for activated sludge bacteria

Library code	No. of white colony	No. of blue colony	The ratio of No. of white colony to No. of blue colony
DH5 α -pUC118 A	1825	175	10.4
DH5 α -pUC118 B	3750	650	5.77
DH5 α -pUC118 C	2150	500	4.30
DH5 α -pUC118 D	2550	275	9.27

Two thousand white colonies can cover whole length of genomic DNA, because the insert DNA is 2 kbp in length and genomic DNA of bacteria is generally 4 million bp in length.

Isolation of VBP gene with colony hybridization

Colored colonies were picked up

Isolation of VBP gene with colony hybridization

Colored filter

Isolation of VBP gene with colony hybridization

One sequence that have almost the same sequence with VBP in spot 4 was isolated.

ORF Deduced protein	1 1	atg M	cgt R	aaa K	tca S	ctt L	ctt L	gct A	tta L	agc S	cta L	ttg L	gca A	gca A	act T	tca S	gca A	Cct P	gta V	ctg L	g gcc A		
ORF Deduced protein	61 21	gct A	gac D	tac Y	tca S	gat D	ggc G	gat D	atc I	cac H	aaa K	aac N	gat D	tac Y	aag K	tgg W	atg M	caa Q	ttt F	aac N	c ctg L		probe like
ORF Deduced protein	121 41	atg M	ggt G	gca A	ttc F	gac D	gaa E	ctt L	cca P	ggc G	aaa K	tca S	tct S	cat H	gat D	tat Y	ctg L	gaa E	atg M	gaa E	a ttt F		sequence
ORF Deduced protein	181 61	ggc G	ggt G	cgt R	tct S	ggc G	atc I	ttt F	gac D	ctg L	tac Y	ggt G	tac Y	gtt V	gat D	gtg V	ttc F	aac N	ctg L	acc T	c agt S		
ORF Deduced protein	241 81	gac D	aaa K	ggc G	agc S	gac D	aaa K	aac N	ggc G	aaa K	gaa E	aaa K	atc I	ttc F	atg M	aag K	ttt F	gct A	cca P	ı cgt R	t gtg V		
ORF Deduced protein	301 101	tca S	ctg L	gat D	gca A	ttg L	act T	ggc G	gcg A	gat D	atg M	tca S	ttt F	ggc G	cca P	gta V	caa Q	gaa E	atg M	tac Y	ttg L		The isolated gene
ORF Deduced protein	361 121	gca A	act T	ctg L	atc I	gaa E	tgg W	ggc G	ggt G	aac N	tca S	gat D	gtt V	aac N	tct S	caa Q	aaa K	atc I	gg G	t ctg L	g ggt G	C	consisted of 807 bp
ORF Deduced protein	421 141	tca S	gac D	gtc V	atg M	gtt V	cca P	tgg W	ttt F	ggc G	aaa K	gtt V	ggt G	cta L	aac N	cta L	tac Y	ggt G	act T	tac Y	gac D	6	and code a protein of
ORF Deduced protein	481 161	tca S	aat N	gaa E	aaa K	gac D	tgg W	aac N	ggc G	ttc F	acc Q	atc I	tca S	act T	aac N	tgg W	ttt F	aaa K	CCI P	ttc F	tac Y	2	268 residues in
ORF Deduced protein	541 181	ttc F	ctt L	gag E	aat N	ggt G	tca S	ttc F	atc I	tcc S	tac Y	caa Q	ggc G	tat Y	atc I	gat D	tac Y	caa Q	ttt F	ggt G	t atg M		engur.
ORF Deduced protein	601 201	gat D	aac N	gat D	aac N	aaa K	gca A	tta L	aac N	acc T	tct S	aac N	ggt G	ggt G	gca A	atg M	ttc F	aat N	gg G	t att I	tac Y		
ORF Deduced protein	661 221	tgg W	cac H	tca S	gat D	cgc R	ttc F	gct A	gta V	ggc G	tat Y	ggc G	tta L	aaa K	gcc A	tac Y	aaa K	gat D	gtt V	tat Y	ggt G		
ORF Deduced protein	721 241	ttg L	aaa K	gat D	gat D	ggt G	ctt L	gct A	ggt G	aaa K	aca T	agt S	gga G	ttt F	ggt G	cac H	tac Y	gta V	gca A	ı gta V	act T		
ORF Deduced protein	781 261	tac Y	aag K	ttc F	tcc S	gaa E	ttc F	gaa E	gct A	tga *													

33

Construction of vector for VBP cloning

Construction of vector for VBP cloning

Vector was digested by EcoRI after ligation

Construction of vector for VBP cloning

VBP expression and purification

(1)Transformation of *E. coli* and expression of VBP

E. coli BL21 was transformed with the constructed vector, and the expression of VBP was induced by IPTG.

IPTG: Isopropyl-beta-D-thiogalactopyranoside

(2)Confirmation of VBP expression

VBP expression was confirmed with SDS-PAGE.

VBP expression and purification

VBP expression and purification

Lanes

1: Marker

2: Water-dissolved proteins

3: Urea-dissolved proteins

4: Purified VBP

5: Dialyzed VBP

Evaluation of virus binding ability of VBP clone with ELISA

VBP immobilization

VBP immobilization on carrier

VBP immobilization on glass particle

Silane-coupling reagent and glutaraldecyde were used for the VBP immobilization

Production of poly-lysine tag VBP (Lys-Tag VBP) Introduction of poly-lysine tag on C-terminus of VBP.

Practical experiment

Construction of virus removing column using VBP.

Isolation of new VBPs

Isolation of Adenovirus-Binding Protein: (ADV/BP)

3-aminopropyltryethoxysilane

- $N = CH (CH_2)_{3}CHO$
- N = CH (CH₂) $_{3}$ CHO glutaraldehyde N = CH (CH₂) $_{3}$ CHO

G – O_{-1}^{I} Si–(CH₂)₃N=CH (CH₂) ₃CHO

$$- N = CH (CH_{2})_{3}CHO \qquad NH_{2} - H_{2}$$

$$- N = CH (CH_{2})_{3}CHO \qquad NH_{2} - H_{2}$$

$$- N = CH (CH_{2})_{3}CHO \qquad NH_{2} - H_{2}$$

$$- N = CH (CH_{2})_{3}CHO \qquad NH_{2} - H_{2}$$

$$- M = CH (CH_{2})_{3}CHO \qquad NH_{2} - H_{2}$$

$$- M = CH (CH_{2})_{3}CHO \qquad NH_{2} - H_{2}$$

$$- M = CH (CH_{2})_{3}CHO \qquad NH_{2} - H_{2}$$

G

$$-$$
 N = CH (CH₂) ₃CH = N $-$ VBP

$$- N = CH (CH_2)_3 CH = N - VBP$$

$$- N = CH (CH_2)_3 CH = N - VBP$$

$$G - O = O = Si = (CH_2)_3 N = CH (CH_2)_3 CH = N = VBP$$

Strategy for VBP immobilization (2) (Oriented immobilization of VBP)

Creation of gene for Lys-Tag VBP

② Construction of cloning vector for Lys-TagVBP

Result of agarose gel electrophoresis

1 Transformation of *E. coli* cells with cloning vector

Exression of Lys-Tag VBP was induced by IPTG

2 Confirmation of the expression of Lys-Tag VBP

The expresson of the Lys-Tag VBP was confirmed with SDS-PAGE

Expression of Lys-Tag VBP

Lane 1: Marker Lane 2: Proteins from transformants induced by IPTG Lane 3: Proteins from transformants

Successful expression of The Lys-Tag VBP was confirmed

Evaluation of virus binding ability of Lys-Tag VBP

54

Evaluation of virus-binding ability of Lys-Tag VBP (Binding constant)

Evaluation of virus-binding ability of Lys-Tag VBP (Binding constant)

K (M⁻¹ × 10⁶)Lys-tag VBP — PV11.10Protein A — Prosep-rA0.34Protein A — Sepharose 4 FF0.14

* R Hahn et al. (2003) Comparison of protein A affinity sorbents

The larger K value is, the stronger the binding ability is.

It was confirmed that there is strong affinity between PV1 and Lys-Tag VBP.

Binding between PV1 and immobilized VBP

1 VBP immobilization on surface of glass particle

Glass beeds (diameter: 1mm)

Binding between PV1 and immobilized VBP

② Confirmation of VBP immibolization

VBP immobilization was confirmed with ELISA, which can detect Xpress region of VBP

ELISA plate

Confirmation of VBP immobilization

Binding between PV1 and immobilized VBP

3 Binding constant

	K (10 ⁶ M ⁻¹)
VBP (Strategy 1)	2.10 (±0.80)
Lys-tag VBP (Strategy 2)	$4.38(\pm 3.05)$

The larger K value is, the stronger the binding is.

Construction of virus-removing column

•VBP immobilization on surface of glass particle

Evaluation of virus removal efficiency

Isolation of new VBPs

- Isolation of Adenovirus-Binding Protein : (ADVBP) from activated sludge bacteria
- Evaluation of virus-binding ability of ADVBP

ADVBPs can be used as viral adsorbents ?

Experimental flow

Isolation of ADVBP for AD3

Isolation of ADVBP for AD40/41

Estimation of molecular weight of ADVBP with SDS-PAGE

Evaluation of virus binding ability of ADVBPs with ELISA

Summaries (1)

Poliovirus-binding protein was successfully isolated with affinity chromatography using polioviral capsid peptide as a ligand.

VBP gene (807bp) can be obtained from genomic DNA library of activated sludge bacteria with colony hybridization.

PVBP clones produced by *E. coli* cells exhibited virus binding ability.

Summaries(2)

Lys-Tag VBP that has poly-lysine tag at its Cterminus was successfully produced.

VBP was successfully immobilized on surface of glass particles with silane coupling reagent and glutaraldehyde.

Adenovirus-binding protein (ADVBP) was successfully isolated with affinity chromatography.

Future works

Isolation of VBPs for other pathogenic viruses such as Noroviruses and Rotaviruses.

Isolation of each VBP gene and construction of cloning system.

Development of virus detection technique using VBP as specific adsorbent.