Membrane Biofouling

Director and Prof. Chung-Hak LEE,

Institute of Environment Protection and Safety Water Environment – Membrane Technology Lab. School of Chemical Engineering,

Seoul National University, KOREA

Water Environment-Membrane Technology Lab.,

Application of Membrane Processes in Water Environment

Water Environment-Membrane Technology Lab.,

MBR : Worldwide Buisiness

thousands of installations of MBRs in the World

Vivendi (France), Memcore (USA) Zenon (Canada), Mitsubishi, Kuboda (Japan), etc..

~ 750 MBRs in Korea since last 6 years

Water Environment-Membrane Technology Lab.,

Commercial MBR plants in Korea *2003(2002)

Membrane Manufacturer	Module type	Company	Trade mark	Membrane Material (Pore Size, مرم)	Starting Year	Number of Installation	Highest capacity (M³/d)	Fitration Mode
MRC (JAPAN)	HOLLOW FIBER MEMBRANE	KEC & HEC	SMAS & HANT	РЕ (0.4)	1997	403(300)	4,000(1,400)	DEAD-END FILTRATION
ZENON (CANADA)		SAE-HAN	ZENOGEM	PVDF (0.035)	2000	10(7)	1,000(300)	
KMS (KOREA)		кмѕ	-	PE (0.4)	2002	150(100)	600(225)	
SKC, E.N.E. (KOREA)		KOLON	KIMAS ,	PSF (0.1)	1998	10(10)	-	
天津膜天社 (CHINA)		RAPAH TECH	-	PVDF (0.1-0.4)	2002	10	-	
YUASA (JAPAN)	PLATE MEMBRANE	ZENIX ENG & JIN WOO ENV.	NIX-MBR	Polyolefin (0.4)	1999	68(67)	4,000(900)	
PURE ENVI-TECH (KOREA)		PURE ENVI-TECH	-	CPVC (0.25)	2002	20(2)	350(250)	
MEMBRATEK (SOUTH AFRICA)	TUBULAR MEMBRANE	AQUATECH	BIOSUF	PES (40,000Da)	1995	50(50)	2,000(2,000)	
RUSSIA		ZENIX ENG.	-	PSF (30,000Da)	1996	13(13)	200(-)	
						734(559)		

Water Environment-Membrane Technology Lab.,

Membranes used for domestic MBR processes

Hollow fiber	Plate	Tubular
MF	MF	UF
Out-In	Out-In	In-Out
Submerged	Crossflow/ Submerged	Crossflow

Factors Affecting Membrane Performance

Water Environment-Membrane Technology Lab.,

Biofouling

: Membranes in contact with the broth of activated sludge reactor will be colonized within short time by microorganisms, leading to the formation of a composite layer known as biofilm.

- : Biofouling has restricted the widespread application of MBR, because i) it limits the maximum flux obtainable,
 - ii) it leads to substantial cleaning requirements,
 - iii) it shortens membrane life time

Development of Biofilm Community

Advances in Microbial Ecology, 1995

J. Rwhere When Brend Men Man bein Gog M. a. Wolffard to Di Fational d Widel sity

Scanning electron micrograph (SEM) of an early bacterial biofilm on the surface of a cellulose acetate (CA) reverse osmosis (RO) membrane.

In this case the RO membrane was used to demineralize pretreated municipal wastewater at Water Factory 21 in Orange County, California.

Note that the microcolonies appear to have gained foothold in low depressions (imperfections)

hear forces might be expected. Localized regions of reduced shear allows more time for

eteria to undergo irreversible attachment. Water Environment-Membrane Technology Lab.,

Scanning electron micrographs (SEMs) of individual cells and microcolonies growing on the permeate (product water) surfaces of polyester Texlon fibers of cellulose acetate (CA) reverse osmosis (RO) membranes. The membranes were fed with a pretreated municipal wastewater at Water Factory 21 in Orange County, California. Note the copius production of extracellular polymeric substances (EPS) by the attached bacteria, especially those cells associated with the larger microcolonies. Such EPS mediates early cell attachment and physically stabilizes and protects the biofilm.

Water Environment-Membrane Technology Lab.,

Models for predicting membrane performance (Flux)

1) Filtration Model

2) Resistance in Series Model

3) Film theory Model

Water Environment-Membrane Technology Lab.,

- If the solute is thought of as a 'cake' of deposited particles,
- the cake (gel, deposit, etc) resistance is obtained from filtration theory.

$$J = \frac{\Delta P}{(R_m + R_c) \cdot \eta} - (1)$$
$$R_c = \alpha \cdot VC_b / A_m = \alpha \cdot m_s / A_m - (2)$$

 $\begin{array}{l} {\sf R}_c \ : \ {\rm solute \ resistance \ (1/m)} \\ {\sf R}_m \ : \ {\rm membrane \ resistance \ (1/m)} \\ {\sf V} \ : \ {\rm cumulative \ solvent \ volume \ (m3)} \\ {\sf C}_b \ : \ {\rm bulk \ solute \ concentration \ (\ kg/m3)} \\ {\sf A}_m \ : \ {\rm membrane \ area \ (m2)} \\ {\sf m}_s \ : \ {\rm mass \ of \ solute \ (kg)} \\ {\alpha} \ : \ {\rm specific \ resistance \ (m/kg)} \end{array}$

For unstirred conditions R_c grows and combining equation (1) with (2) gives,

$$J(t) = \frac{1}{A_m} \frac{dV}{dt} = \frac{\Delta P}{(R_m + \alpha \cdot VC_b / A_m) \cdot \eta} \quad -(3)$$

from eqn.(3)
$$\int_{0}^{t} dt = \int_{0}^{V} \frac{R_{m} \cdot \eta}{\Delta P \cdot A_{m}} \cdot dV + \int_{0}^{V} \frac{\alpha \cdot VC_{b} \cdot \eta}{\Delta P \cdot A_{m}^{2}} \cdot dV \quad -(4)$$

At constant pressure, integration of eqn.(4) gives,

$$t = \frac{R_m \cdot \eta}{\Delta P \cdot A_m} \cdot V + \frac{\alpha \cdot V^2 C_b \cdot \eta}{2\Delta P \cdot A_m^2}$$

$$\frac{R_{m} \cdot \eta}{\Delta P \cdot A_{m}} + \frac{\alpha \cdot V \ C_{b} \cdot \eta}{2\Delta P \cdot A_{m}^{2}} \quad (well - known \ filtration \ equation)$$
Water Environment-Membrane Technology Lab., Seoul National University

If R_m is negligible,

$$V^{2} = \frac{2 \cdot \Delta P \cdot A_{m}^{2}}{\alpha \cdot C_{b} \cdot \eta} \cdot t \quad -(5)$$

Which predicts that filtrate accumulates according to t^{1/2}

Water Environment-Membrane Technology Lab.,

From the filtration model, it is possible to estimate the magnitude of the polarized layer (δ_s) in stirred ultrafiltration.

 $\begin{array}{l} \alpha : \text{determined by unstirred experiment.} \\ \text{J}, \text{R}_m : \text{ measurement by experiment.} \\ \text{From eqn. (1), (2) } m_{s}/\text{A}_m \text{ is obtained.} \\ \epsilon : \text{obtained from } \text{C}_g \end{array}$

The effective thickness of the polarized solute layer (gel layer) ;

$$\delta_{s} = \frac{m_{s}}{A_{m}(1-\varepsilon) \cdot \rho_{s}} - (7)$$

Water Environment-Membrane Technology Lab.,

Experimental determination of α

From a plot of t/v vs V, α is obtained experimentally by the slope.

Water Environment-Membrane Technology Lab.,

 α properties are given by the Carman-Kozeny relationship:

$$\alpha = \frac{180(1-\varepsilon)}{\rho_s \cdot d_s^2 \cdot \varepsilon^3}$$

 $\boldsymbol{\alpha}$: specific resistance of biofilm

- ϵ : Porosity
- ρ : density (floc density)
- d_s : size (floc diameter)

Theoretical determination of α

$$J = \frac{\Delta P}{\mu \cdot (R_m + R_C)} - (1)$$

if $R_C >> R_m$,
$$J = \frac{\Delta P}{\mu \cdot R_C} - (2)$$

Water Environment-Membrane Technology Lab.,

Theoretical determination of α

from Carman-Kozeny Equation,

$$\frac{\Delta P}{\delta_C} = \frac{K \cdot \mu \cdot (1 - \varepsilon)^2 \cdot S^2 \cdot v}{\varepsilon^3} \quad -(3)$$

- ΔP : pressure drop (Pa)
- δ_{C} : thickness of cake (m)
- v : superficial velocity (m/sec)
- ϵ : porosity of filter media (dimensionless)
- μ : viscosity of fluid (Pa·sec)
- K : Kozeny-Carman constant (\cong 5)(dimensionless)
- S : specific surface (area/volume) of particle (1/m)
- d : particle diameter (m)

If the particle is spherical,

$$S = \frac{\pi \cdot d^2}{\pi \cdot d^3 / 6} = 6 / d - (4)$$

If the particle is non-spherical,

$$S = \frac{6}{\Psi \cdot d}$$

6/ Ψ : shape factor Ψ = 1 for spherical particle. Ψ : sphericity (dimensionless)

= Surface area of equivalent-volume sphere True surface area

From eqn. (3)

$$v = \frac{\Delta P}{\delta_C} \frac{\varepsilon^3}{K \cdot \mu \cdot (1 - \varepsilon)^2 \cdot S^2}$$

$$v = \frac{\Delta P}{\delta_C} \frac{\varepsilon^3}{5\mu \cdot (1 - \varepsilon)^2 \cdot (6/d)^2}$$

$$v = \frac{\Delta P}{\delta_C} \frac{d^2 \cdot \varepsilon^3}{180\mu \cdot (1 - \varepsilon)^2} - (5)$$

Water Environment-Membrane Technology Lab.,

$$J = \frac{1}{A_m} \frac{dQ}{dt} = v$$
$$J = \frac{\Delta P}{\delta_c} \frac{d^2 \cdot \varepsilon^3}{180\mu \cdot (1 - \varepsilon)^2} - (6)$$

Q : volume of flow (m³/sec) A_m : membrane area (m²)

From eq. (2) and (6)

$$R_{C} = \frac{180\delta_{C} \cdot (1-\varepsilon)^{2}}{d^{2} \cdot \varepsilon^{3}} - (7)$$

Water Environment-Membrane Technology Lab.,

$$R_C = \alpha \cdot m_S / A_m - (8)$$

 α : specific cake resistance (m/kg) m_s : mass of particle deposited (kg) ρ_s : particle density excluding water (kg/m³)

$$m_{s} = \delta_{c} \cdot A_{m} \cdot (1 - \varepsilon) \cdot \rho_{s} - (9)$$

from eqn. (7), (8) & (9)

$$\alpha = \frac{180 \cdot (1 - \varepsilon)}{\rho_s \cdot d^2 \cdot \varepsilon^3} - (10)$$

Water Environment-Membrane Technology Lab.,

- The effect of pressure on α is frequently expressed by the relationship.

$$\alpha = \alpha_0 \cdot \Delta P^s$$
 [α_0 : constant
s : compressibility factor

- For compressible solids, typical values of $s = 0.2 \sim 0.7$ (Fig. 2)

 ΔP_{q} : pressure drop across the deposited solute

$$\Delta P_g = \Delta P \left(\frac{R_g}{R_m + R_g} \right) = \Delta P - R_m \cdot \eta \cdot J$$

Water Environment-Membrane Technology Lab.,

Fig. 2. Specific resistance vs Pressure

Water Environment-Membrane Technology Lab.,

• Hydraulic permeability(P_h)

$$P_{h} = \frac{d_{p}^{2} \cdot \varepsilon^{3}}{180 \cdot (1 - \varepsilon)^{2}}$$

d_p : particle diameter (m): porosity of the cake layer (dimensionless)

Combined with Resistance-in-series model

$$R_{c} \propto \frac{\mu \cdot (1-\varepsilon)^{2}}{d_{p}^{2} \cdot \varepsilon^{3}}$$

 μ : viscosity of fluid (Pa-sec)

Water Environment-Membrane Technology Lab.,

Models for predicting membrane performance (Flux)

1) Filtration Model

2) Resistance in Series Model

3) Film theory Model

Water Environment-Membrane Technology Lab.,

- Hagen-Poiseuille and Film Theory Model does not describe the entire pressure-flux behavior, i.e., pressure-controlled at low pressures, pressure-independent at high pressures. Therefore ultrafiltration performance is also frequently interpreted by Resistance-in-series relationship.

1) Gel-Polarized Model.

For an ideal membrane and solute, Hagen-Poiseuille equation can be rewritten as,

$$V = \frac{\Delta P}{R_m \cdot \eta}$$
 R_m : Intrinsic Membrane Resistance determined using pure water as feed.

With a real feed, the membrane resistance by itself may be only a small part of the total resistance and there may be a series of additional resistances.

$$J = \frac{\Delta P}{(R'_m + R_P) \cdot \eta} = \frac{\Delta P}{(R_m + R_f + R_g + R_{BL}) \cdot \eta}$$

- R_f: Fouling layer resistance (specific membrane-solute interactions, either by surface deposition or pore fouling)
- R_P: Resistance attributable to the polarized solute.
- R_a: Resistance due to gel-polarized layer
- \ddot{R}_{BL} : Resistance of the viscous, but non-gelled boundary layer.

 $R_P = R_g + R_{BL}$

 $R_{P} = \emptyset \Delta P_{T}$ (a function of applied pressure)

- i.e. any increase in ΔP_T simply increases the thickness of the gel layer, and increase R_g .

$$\therefore J = \frac{\Delta P_T}{(R'_m + \phi \Delta P_T) \cdot \eta}$$

Water Environment-Membrane Technology Lab.,

Remark ;

1) At High pressure, $R_P >> R'_m$ J will become independent of ΔP_T and approach the limiting value 1/ø

2) At low pressure, when polarization is less ($C_w < C_g$)

R_g=0, ∴J is pressure-dependent. (i.e. 'pre=gel' condition)
$$J = \frac{\Delta P_T}{(R'_m + R_{BL}) \cdot \eta}$$

3) This model suffer from having to obtain the constants experimentally.

- Unit of R_m;

$$J = \frac{\Delta P}{R_m \cdot \eta}$$

$$\therefore R_m = \frac{\Delta P_T}{J \cdot \eta} = \frac{N/m^2}{\frac{m^3}{m^2 \cdot \sec} \cdot \frac{N}{m^2} \cdot \sec} = 1/m$$

 R_m is useful for modeling purpose and for evaluating the effectiveness of the cleaning procedures.

$$J = \frac{\Delta P}{(R_m + R_f + R_c) \cdot \eta}$$

Rm : Intrinsic Membrane Resistance

- R_f : Fouling layer resistance (specific membrane-solute interactions, either by surface deposition or pore fouling) ← Bulk Compositions
- Rc : Cake layer resistance ← Biofilm

Models for predicting membrane performance (Flux)

1) Filtration Model

2) Resistance in Series Model

3) Film theory Model

Water Environment-Membrane Technology Lab.,

The Film-Theory Model

Figure 4.14. Schematic of concentration polarization during UF of colloidal and macromolecular solutes, showing the buildup of the polarized (gel) layer and associated boundary layer. The same phenomenon occurs with MF membranes, depending on the rejection of the solutes.

Water Environment-Membrane Technology Lab.,

i) Longitudinal mass transport within the boundary layer is assumed negligible (mass transfer within the film is one dimensional)ii) In the steady state, the solute flux is constant throughout the film and equal

to the solute flux through the membrane.

• A material balance for the solute in a different element gives the equation.

$$J_{S} = C_{P} \cdot J_{V} = CJ_{V} - D(dC/dx)$$

 J_{S} : solute flux

- J_V : solvent flux
- C_b : bulk solute concentration
- $\delta\,$: thickness of the boundary layer
- C_P : permeate solute concentration
- C_w : solute concentration at the membrane surface
- D : solute diffusion coefficient

Boundary Condition ; $C = \begin{cases} C_b & \text{at } x=0 \\ C_W & \text{at } x=\delta \end{cases}$

$$D \cdot \frac{dC}{dx} = J_V (C - C_P)$$

$$\int_{C_b}^{C_w} D \cdot \frac{dC}{C - C_P} = \int_0^{\delta} J_V \cdot dx \rightarrow D \cdot \ln(C - C_P) \begin{vmatrix} C_w \\ C_b \end{vmatrix} = J_V \cdot \delta$$

$$\therefore J_V = \frac{D}{\delta} \ln\left(\frac{C_w - C_P}{C_b - C_P}\right) = k_S \cdot \ln\left(\frac{C_w - C_P}{C_b - C_P}\right)$$

$$J_V = k_S \cdot \ln\frac{C_w}{C_b} \quad (if \ C_P = 0)$$

 $D/\delta = k_S$ k_s : mass-transfer coefficient

Water Environment-Membrane Technology Lab.,

- If
$$C_w \rightarrow C_g$$

 $J_{\lim} = k_s \cdot \ln \frac{C_g}{C_b}$ (Gel polarization Model)
 C_g : Gel Concentration
 J_{\lim} : limiting flux

• Observed retention ; S=1-C_p/C_b, True retention ; R=1-C_p/C_w The concentration polarization ; M=C_w/C_b = 1-S+S exp(J_v/k_s) So, M can be calculated from the measurement of the retention and the permeate flux, when k_s is known.

Remark;

- 1) This model will be valid only in the pressure-independent region. (there is no pressure term) (Fig. 4.13)
- 2) Flux will be controlled by the rate at which solute is transferred back from the membrane surface into the bulk fluid.
- 3) Flux can only be improved by enhancing k_s as much as possible, such as by reducing the thickness of the boundary layer (δ)
- 4) C_{q} is fixed by physicochemical properties of the feed.

L_m: permeability coefficient

Transmembrane Pressure

Figure 4.13. Generalized correlation between operating parameters and flux, indicating the areas of pressure control and mass transfer control.

Water Environment-Membrane Technology Lab.,

Remark;

- 5) J_{lim} should be independent of membrane properties. It is determined by C_g, C_b and k_s (hydrodynamic conditions) (But Fane showed that 'gel-polarized' behavior with identical solutions and hydrodynamics produced different J_{lim} values when membranes of differing permeability, L_m)
- 6) Feed solutions of various macrosolutes with concentration did not give zero flux.
- 7) If C_g is a 'gel' concentration, it should depend only on the nature of the solute, but it appears to vary with system-hydrodynamics.
- 8) This model appears to have physical limitations although it still remains the most convenient model from a practical point of view.

L_m: permeability coefficient

Flux Paradox

Film theory model – for macromolecule solutions

Figure 4.18. Relationship between flux and protein concentration during concentration of human albumin and whole bovine serum. The module was a 15-mil thinchannel laminar flow unit with Amicon PM-10 membrane. Theoretical lines were drawn using the Leveque solution and the film theory, with diffusion coefficients of 4×10^{-7} cm²/sec for whole bovine serum and 6×10^{-7} cm²/sec for human albumin (adapted from Porter, 1979).

Water Environment-Membrane Technology Lab.,

Film theory model – for colloidal suspensions

Figure 4.21. Ultrafiltration of styrene-butadiene polymor latex in LTC-1,¹ 15-mil channel, XM-50 membrane, 60 psig pressure (From Porter, 1979).

Water Environment-Membrane Technology Lab.,

Flux Paradox

1) For macromolecular solutions, the agreement between theoretical and experimental ultrafiltration rates is within 15~30%.

2) For colloidal suspensions, experimental flux values are often one to two orders of magnitude higher than those indicated by the Lévéque and Dittus-Boelter relationships. But the reason is not clear.

3) In colloidal suspensions, the diffusion coefficient calculated from the ultrafiltrate flux using the Lévéque and Dittus-Boelter equations is generally from one to three orders of magnitude higher than the theoretical Stokes-Einstein diffusivity.

 Minor adjustments in molecular parameters such as diffusivity (D), kinematic viscosity (), or gel concentration (C_g) are incapable of resolving order of magnitude discrepancies.

5) Back-diffusive transport of colloidal particles away from the membrane surface into the bulk stream (D. ∂C/∂x) is substantially augmented over that predicted by the Lévéque and Dittus-Boelter relationships.

6) For colloidal suspensions, mass transfer from the membrane into the bulk stream is driven by some force other than the "concentration gradient".

M.C. Porter's opinion (1972) : Tubular Pinch Effect is responsible for this augmented mass transfer.

Tubular Pinch Effect

Figure 4.34. The tubular pinch effect. Particles of 1-mm diameter were flowing in a 15% aqueous glycerin solution. Particle concentration = 5%, channel Re = 900, particle Re = 225 (adapted from Brandt and Bugliarello 1966).

• Segré and Silberberg : the first to publish the observations of the tubular pinch effect. (As the particles were flowing through a tube, the particles migrated away both from the tube wall and the tube axis, reaching equilibrium at an eccentric radial position.)

Forces acting on a suspended particle

Fig. -1. Forces and torques acting on a charged, spherical particle suspended in a viscous fluid undergoing laminar flow in the proximity of a flat porous surface.[modified from Wiesner(1992)]

Water Environment-Membrane Technology Lab.,

Factor	Expression *		
Toward the membrane			
Gravity	$v_{\mu} = \frac{\pi}{18\eta} d_{\mu}^2 \rho_{\mu} g$		
Van der Waals attraction	$v_A = \frac{A}{36\pi\eta s^2}$		
Permeation drag (flux)	3		
Away from the membrane			
Buoyancy	$v_{k} = \frac{\pi}{18\eta} d_{\rho}^{2} \rho_{\rho} g$		
Electrical double layer repulsion	$v_R = \frac{2\kappa\varepsilon\zeta^2 \exp(-\kappa s)}{3\eta}$		
Browian diffusion	$v_{\mu} = \frac{kT}{3\pi\eta d_{\mu}\delta}$		
Shear-induced diffusion	$v_s = 0.0225 \frac{u_s d_p^2}{h\delta}$		
Lateral migration	$v_t = \frac{13.8}{128} \frac{\rho_p u_s^2 d_p^3}{\eta h^2}$		

Table 1. Factors Affecting Particle Transport in Crossflow Membrane Filtration *

* Membrane module: plate and frame.

*d*_p, particle diameter; ρ_p, particle density; η, dynamic viscosity; . *A*, Hamaker constant; *s*, separation distance; ρ_b, liquid viscosity; κ, Debye-Hückel parameter; ε, fluid permittivity; δ, boundary layer thickness calculated by the Lévéque equation; *ζ*, zeta potential; *u*_o, average fluid velocity; *h*, half-channel height.

Water Environment-Membrane Technology Lab.,

Fig. 7.7. Back-transport velocity based on different migration

mechanisms Water Environment-Membrane Technology Lab.,

Fig. -4. Comparison of different models explaining a critical flux over a range of particle size.

Water Environment-Membrane Technology Lab.,

Remark :

1) Crossflow microfilters are occasionally operated in the turbulent regime, whereas all of the models described are restricted to laminar flow.

2) Brownian and shear-induced diffusion may be considered simultaneously by adding the diffusion coefficients, although recent simulations have shown that the diffusion coefficients are not strictly additive.

3) The models described are based on idealized suspensions of equi-sized spheres, which do not irreversibly stick to the membrane or cake surfaces but rather are free to diffuse or lift away. Further experiments and models are needed to study Brownian, shear induced diffusion, and inertial lift in real suspensions of non-spherical, deformable particles having both narrow and broad size distributions.

4) Considerable experimental and theoretical research remains to complete our understanding of crossflow microfiltration.

For example, issue of direct membrane fouling by the attachment of particles and precipitates to the membrane pores and surface have not been adequately addressed.

Fig. -5. Depositing particle size distribution for each flux condition. Size distribution when flux is infinite means the initial particle size distribution measured experimentally (T = 298 K, $\Psi_0 = 50$ mV, $A = 3.4 \times 10^{-20}$ J).

Water Environment-Membrane Technology Lab.,

Membrane Fouling: Identification and Prevention

Water Environment-Membrane Technology Lab.,

Membrane Fouling: Identification and Prevention

Physicochemical Approach:

Examples for submerged MBR systems:

- reduce flux (J)
- increase membrane aeration
- employ physical or chemical cleaning
 - backflushing (HF only)
 - relaxation (ceasing permeation whilst continuing aeration)
 - in-situ clean (chemically enhanced backwash)
 - ex-situ clean (soak)
- all have cost implications

Membrane Fouling: Identification and Prevention

Microbiological Approach

- Change of microbial characteristics :
 - Floc morphology & size,
 - Physiological state,
 - EPSs(extracellular polymeric substances) content

Overview of factors leading to membrane biofouling

Water Environment-Membrane Technology Lab.,

Research on MBR in 21C

Water Environment-Membrane Technology Lab.,