Characteristics of Nutrient Removal in Vertical Membrane Bioreactors

Prof. Hang-Sik Shin

Dept. of Civil and Environmental Engineering Korea Advanced Institute of Science and Technology

- Research Background
- Operating factors for vertical MBR
- Nutrient removal in vertical MBR
- Remediation of fouling in vertical MBR
- Conclusions

Mechanisms of membrane bioreactors

Research Objectives and Scope

Operating factors in vertical MBR

Objective and Scope

Test phases

Phase	Internal recycle rate	TCOD/T-N ratio	HRT	Operation period
1	3Q			1-120 days
2	4Q	10	$12 \ hrs$	121-150 days
3	5Q			151-180 days
4		8		181-210 days
5	4Q	6	12 hrs	211- 240 days
6		4		241-270 days
7			10 hrs	271-300 days
8	4Q	10	8 hrs	301-330 days
9			6 hrs	331-360 days

[Q is the influent flow rate]

Characteristics of the membrane used

Category	Characteristic
Membrane material	Hydrophilic poly-tetrafluoroethylene (PTFE)
Nominal pore size	0.45 μm
Module type	Hollow fiber
Intensity	5 kg/cm
Outer/Inner diameter	2/1 mm
Maximum temperature	95°C
Operation range of pH	0 - 14

Summary of Results

> I.R. (3Q \rightarrow 4Q \rightarrow 5Q): T-N= 68 \rightarrow 83%, T-P= 51 \rightarrow 80%

C/N ratio (4 → 10): T-N= 55 → 80%, T-P= 38 → 76%
 : Phosphorus removal is more dependent on the content of organics than nitrogen

> HRT (12 \rightarrow 6 hrs): at least 8 hrs HRT was needed

Desirable operating conditions; internal recycle rate = 4Q, HRT
 8 hrs

> Sludge production = 1 - 6% of the CASP

Nutrient removal in vertical MBR

Objective and Scope

Scale	Reactor	Substrate
Laboratory	MBR1	Sodium acetate
Ax (12L) +	MBR2	Propionic acid
Ox (20L)	MBR3	Glucose

Scale	Substrate
<u>Pilot</u> Ax (500L) + Ox (833L)	Municipal wastewater

EBPR activity

[EBPR= Enhanced Biological Phosphorus Removal]

Materials and Methods

Characteristics of laboratory-scale MBRs

Characteristics of synthetic wastewater

Compound	MBR1	MBR2	MBR3
Organic matter	Sodium acetate	Propionic acid	Glucose
Chemical formula	$CH_3COONa \cdot 3H_2O$	CH₃CH₂COOH	$\mathrm{C_6H_{12}O_6}$
Molecular weight	136.1 g/mol	74.1 g/mol	180.0 g/mol
COD value per mol	64 g COD/mol	96 g COD/mol	192 g COD/mol
For <u>C/N ratio 10</u> as COD	300 mg/l	300 mg/l	300 mg/l
For C/N ratio 5 as COD	150 mg/l	150 mg/l	150 mg/l
Nitrogen and Phosphorus			
$(NH_4)_2SO_4$	30 mg/l	30 mg/l	30 mg/l
KH ₂ PO ₄	6 mg/l	6 mg/l	6 mg/l

Experimental conditions for lab-scale MBRs

Phase	C/N ratio	Internal recycle rate	HRT	Operation period
1	10			1-150 days
2	5	400%	8 hours	151-300 days
3	5 (influent) + 5 (CFW)			301-420 days

Characteristics of a pilot-scale MBR

Experimental conditions for a pilot-scale MBR

Phase	HRT	C/N ratio	Operation period	Remark
1A	10 hrs	5.5	1 - 28 days	Accumulation period
1B	10 hrs	5.5	29 - 68 days	Set-up of an internal barrier
2	8 hrs	5.5	69 - 360 days	Temperature effect
3	6 hrs	5.5	361 - 480 days	-
4	4 hrs	5.5	481 - 600 days	-
5	8 hrs	6.8	601 - 630 days	Addition of CFW (0.43 %)
6	8 hrs	8.2	631 - 660 days	Addition of CFW (0.86 %)

Characteristics of municipal wastewater

Co	nstituents	Concentration
COD	Total Soluble	$232 \pm 41 \text{ mg/l}$ $161 \pm 25 \text{ mg/l}$
SS	Total Volatile	$220 \pm 52 \text{ mg/l}$ $110 \pm 30 \text{ mg/l}$
Nitrogen	Total NH3-N NO3-N	42 ± 5 mg/l 27 ± 3 mg/l Not detected
Phosphorus	Total Soluble	$3.2 \pm 0.4 \text{ mg/l}$ $1.9 \pm 0.4 \text{ mg/l}$
VFAs Initial pH		Not detected 7.3 ± 0.1

Total COD/Total N = 5.5 \rightarrow insufficient for nutrient removal

Characteristics of external carbon source

Со	nstituents	Concentration
COD	Total	<u>13,200 ± 260 mg/l</u>
VFAs	as COD	5,100 ± 58 mg/l
SS	Total	Not detected
	Volatile	Not detected
Nitrogen	Total	83 ± 26 mg/l
_	NH4-N	$55 \pm 18 \text{ mg/l}$
Phosphorus	Total	$36 \pm 15 \text{ mg/l}$
	Soluble	$15 \pm 9 \text{ mg/l}$
Salt concent	ration	$450 \pm 63 \text{ mg/l}$
Initial pH		4.0 ± 0.1

Nitrogen removal potential of the CFW

Carbon source		Denitrification yield (mg NO3-N/mg COD)	Reference
Acetate	Acetate		Akunna <i>et al.</i> , 1993 Lee <i>et al.</i> , 1996
Methanol		0.25	Lee et al., 1996
Glucose		0.18	Akunna <i>et al.</i> , 1993
CFW		0.20	*This study
			·
Carbon source	Sp	ecific denitrification rate (mg N/g VSS/hr)	Reference
	2.0		Nyberg <i>et al.</i> , 1992 Gerber <i>et al.</i> , 1987
Acetate	3.4		Isaacs <i>et al.</i> , 1995
	12		Hallin <i>et al.</i> , 1998
		49	Gerber et al., 1996
Propionate		3	Hallin et al., 1998
		1.0	Nyberg et al., 1992
Methanol		1.3	Gerber <i>et al.</i> , 1987
1/10/11/01		7	Hallin <i>et al.</i> , 1998
		29	Lee <i>et al.</i> , 1996
Glucose		1.1 1.8	Gerber <i>et al.</i> , 1987 Hallin <i>et al.</i> , 1998
CFW		13	*This study

Phosphorus release potential of the CFW

Results and Discussion

Effluent quality of lab-scale MBR fed with sodium acetate

Behaviors of pH and pollutants in the reactor

Removal efficiencies of organics and nutrients

Item	Phase 1			Phase 2		Phase 3			
Sodium acetate	COD	T-N	T-P	COD	T-N	T-P	COD	T-N	T-P
In (mg/l)	300	30	6	150	30	6	304.7	30.6	6.4
Avg. out (mg/l)	11.0	6.3	0.8	7.2	11.2	3.9	15.0	5.8	0.5
Std.	2.9	0.4	0.2	1.7	0.7	0.3	2.2	0.4	0.2
Removal (%)	96			95			95		
Item	I	Phase 1			Phase 2			Phase 3	
Propionic acid	COD	T-N	T-P	COD	T-N	T-P	COD	T-N	T-P
In (mg/l)	300	30	6	150	30	6	304.7	30.6	6.4
Avg. out (mg/l)	8	6.6	1.0	6	11.8	4.0	11	5.5	0.4
Std.	2.3	0.5	0.3	1.4	0.4	0.3	1.3	0.4	0.1
Removal (%)	9 7			96			96		
Item	P	hase 1			Phase 2			Phase 3	
Glucose	COD	T-N	T-P	COD	T-N	T-P	COD	T-N	T-P
In (mg/l)	300	30	6	150	30	6	304.7	30.6	6.4
Avg. out (mg/l)	6	5.8	1.3	5	11.2	3.8	9	6.1	1.2
Std.	0.4	0.6	0.2	0.9	2.7	0.2	1.9	0.6	0.2
Removal (%)	98			9 7			97		

[Avg: average; Std: standard deviation]

Characteristics of EBPR activity with various substrates

Experimental conditions for assessment of EBPR activity

Test	Sludge origin Remark	MBR1	MBR2	MBR3	
	Operating condition of the MBR		C/N	=10	
1	Carbon source	Sodium acetate	Propionic acid	Glucose	
	COD concentration		100 mg/l		
	Operating condition of the MBR		Phase 2 C/	N=5	
2	Carbon source	Sodium acetate	Propionic acid	Glucose	
	COD concentration	100 mg/l			
	Operating condition of the MBR	C/N=5+5			
3	Carbon source	Sodium acetate	Propionic acid	Glucose	
	COD concentration		100 mg/l		
	Operating condition of the MBR		C/N	 =5+5	
	Carbon source	Sodium acetate	Propionic acid	Glucose	
4			+	+	
	COD concentration	50 mg/l	50 mg/l	50 mg/l	
		+ 50 mg/l	+ 50 mg/l	+ 50 mg/l	

[CFW= Condensate of Food Waste]

Results of the assessment of EBPR activity with various substrates

Batch test			P rele	ease (mg P/g	g VSS)	P uptake (mg P/g VSS)			
			Acetate	Propionic acid	Glucose	Acetate	Propionic acid	Glucose	
	(1		8	6	4	10	7	5	
	2		5	3	2	6	3	2	
ſ	3		13	9	7	15	11	7	
4		15	16	11	17	16	13		

Removal efficiencies of nutrients

_		Total nitrogen				Total phosphorus					
	<u>HRT</u>	In (n	ng/l)	Out ((mg/l)	Re	In (n	ng/l)	Out (mg/l)	Re
		Avg	Std	Avg	Std	(%)	Avg	Std	Avg	Std	(%)
	10 hr	41.8	3.9	13.2	1.4		3.1	0.4	1.3	0.2	
	10 hr	40.7	4.4	9.8	1.8		3.1	0.4	0.7	0.1	
	8 hr	41.4	4.4	10.6	2.6		3.2	0.4	0.7	0.2	
	6 hr	42.4	4.8	12.3	1.8	71	3.2	0.5	1.1	0.2	66
	4 hr	41.6	4.9	15.7	1.8	62	3.1	0.4	1.8	0.3	42
+CF	W 0.43%	40.5	5.1	9.8	2.2	76	3.2	0.3	0.4	0.1	88
+CF	N 0.86%	43.5	4.6	8.1	1.0		3.3	0.4	0.3	0.1	

[Avg: average; Std: standard deviation; Re: removal efficiency]

8 hr

8 hr

Behaviors of nitrogen and phosphorus in the pilot-scale reactor

Phase 1A = 10 hr HRT w/o internal barrier
Phase 2 = 8 hr HRT
Phase 6 = 8 hr HRT + CFW 0.86%

Removal efficiencies of nutrients at various temperatures

- HRT=8 hrs

		Ammonia-N					Nitrate-N				Total phosphorus				
Phase 2	In (mg/l)		Out (mg/l)		Re	In (n	ng/l)	Out (i	mg/l)	Re	In (n	ng/l)	Out (i	mg/l)	Re
2	Avg	Std	Avg	Std	(%)	Avg	Std	Avg	Std	(%)	Avg	Std	Avg	Std	(%)
17 °C	27.5	3.1	5.2	0.4	81	0	-	5.1	2.0	-	3.2	0.4	0.7	0.1	78
25 °C	27.4	3.1	4.2	0.7	85	0	-	5.4	2.5	-	3.2	0.2	0.7	0.1	78
19 °C	27.8	3.2	3.9	0.5	88	0	-	6.0	2.1	-	3.2	0.5	0.6	0.1	81
13 °C	26.8	2.9	5.7	0.2	79	0	-	7.8	1.3	-	3.0	0.4	0.7	0.1	77

[Avg: average; Std: standard deviation; Re: removal efficiency]

Photographs of the formation of dynamic membranes

Before use

After use

Inner side (Black)

→ Outer side (Brown)

The role of dynamic membrane in removal of pollutants

	Phase	Ox	Eff	Re	Ox	Eff	Re	Ox	Eff	Re	Ox	Eff	Re
		(m ₂	g/l)	(%)	(m)	g/l)	(%)	(m ₂	g/l)	(%)	(m	ıg/l)	(%)
(1B	7.0	6.1	13	3.4	3.1	9	4.9	4.7	4	0.70	0.73	-4
	2	9.5	8.7	8	3.2	3.0	6	6.1	5.8	5	0.71	0.74	-4
	3	12.4	11.6	6	2.8	2.7	4	7.5	7.3	3	1.20	1.24	-3
	4	14.2	13.1	8	6.5	6.3	3	9.3	9.0	3	1.89	1.93	-2
	5	13.4	12.7	5	2.7	2.6	4	5.2	5.0	4	0.40	0.42	-5
U	6	13.5	12.7	5	2.6	2.5	4	3.4	3.2	3	0.31	0.32	-6

[Ox = oxic zone; Eff = effluent; Re = removal efficiency]

Experimental conditions

Schematic diagram of dynamic membranes

Reuse potential of the effluent in the pilot-scale vertical MBR

Cotogora	Itom (IInit)	^a Drinking water	₽MHO	^c MBR effluent	
Category	Item (OIII)	standards	guidelines	quality	
Microorgonicm	Total colony counts (CFU/ml)	100		Not detected	
WILLOU gainsin	Total coliforms (CFU/100ml)	0	0	Not detected	
	Lead (mg/l)	0.05	0.01	Not detected	
	Fluoride (mg/l)	1.5	1.5	Not detected	
	Arsenic (mg/l)	0.05	0.01	Not detected	
	Selenium (mg/l)	0.01		Not detected	
Health-related	Mercury (mg/l)	0.001	1.0	Not detected	
inorganic	Cyanide (mg/l)	0.01	0.07	N <mark>at datasta</mark> d	
matters	Ammonium-N (mg/l)	0.5	0.91		
	Hexachromium (mg/l)	0.05	0.05	Nor genecied	
	Nitrate-N (mg/l)	10	10.3	5.9	
	Cadmium (mg/l)	0.01		Not detected	
	Boron (mg/l)	0.3		Not detected	
	Diazinon (mg/l)	0.02		Not detected	
	Malathion (mg/l)	0.25		Not detected	
	Parathion (mg/l)	0.06		Not detected	
	Fenitrothion (mg/l)	0.04		Not detected	
	Cabaryl (mg/l)	0.07		Not detected	
	Total trihalomethanes (mg/l)	0.1		Not detected	
	Chloroform (mg/l)	0.08		Not detected	
	Phenol (mg/l)	0.005	0.001	Not detected	
Health-related	1,1,1-Trichloroethan (mg/l)	0.1		Not detected	
organic matters	Tetrachloroethylene (mg/l)	0.01		Not detected	
-	Trichloroethylene (mg/l)	0.03		Not detected	
	Dichloromethane (mg/l)	0.02		Not detected	
	Benzene (mg/l)	0.01		Not detected	
	Toluene (mg/l)	0.7		Not detected	
	Ethylbenzene (mg/l)	0.3		Not detected	
	Xylene (mg/l)	0.5		Not detected	
	1,1-Dichloroethylene (mg/l)	0.03		Not detected	
	l etrachlorocarbon (mg/l)	0.002		Not detected	
	Hardness (mg/l)	300		18	
	Permanganate consumption (mg/l)	10	A	3.5	
	Teste	Not abnormal	Acceptable	Acceptable	
	Cormor (mgfl)		Acceptable	Not detected	
	Color (color wit)	5	15		
A	Determent (mg/l)	n's	15	ດ້ຳ	
Aesthetic-	nH	58.85	70.85	73	
related	Zinc (mgfl)	1	7.0-0.2	0.04	
components	Chloride (mgfl)	250	200	18	
1	Total solids (mgl)	500	200	267	
	Iron (mgfl)	03	03	Not detected	
	Manganese (mg/l)	03	0.5	0.056	
	Turbidity (NTII)	1	s	0.050	
	Sulfate (mg/l)	200	200	16	
	Aluminium (mg/l)	0.2		0.02	

[Source: a= MOE, 2002; b=Xing et al., 2001; c= average concentrations in phase 2]

Comparison of capital costs

For a 2,500 m³/d treatment plant

[Source: The STOWA, 2002]

Summary of Results

Condensate of food waste (CFW)

- \rightarrow great potential as a carbon source for nutrient removal !
- > In the lab-scale vertical MBRs (acetate, propionic acid, glucose),
 - Average removal efficiency of nitrogen was about 80%
 - Removal efficiencies of phosphorus decreased in order of acetate (87%), propionic acid (83%), and glucose (78%) at C/N = 10
 - Addition of the CFW (50% of COD) → improved nitrogen and phosphorus removal efficiencies by 2 - 4% and 4 - 11%, respectively.

Assessment of EBPR activity (batch test)

P release/uptake activity; acetate > propionic acid > glucose
 > several kinds of PHAs were detected inside the cells

In the pilot-scale MBR treating municipal wastewater,

- Average removal efficiency of total COD, T-N, and T-P
 - \rightarrow 96%, 74%, and 78%, respectively at 8 hr HRT and C/N = 5.5
- As the CFW was supplemented (0.86%), T-N and T-P removal efficiencies increased to 81% and 91%, respectively.
- At differing temperature (13 25 °C),
 - \rightarrow Nitrification efficiency = 79 81%
 - \rightarrow Phosphorus removal efficiency = 77 81%
- Additional removal by the formation of dynamic membranes
 - \rightarrow Organics (8%), nitrification (5%) and denitrification (4%)
- The effluent quality could satisfy the current drinking water standards except for ammonia-N.

Analysis of population dynamics

- As C/N ratio decreased, the number of microbial species decreased
- Species of the beta subclass or Proteobacteria are considered to play an important role in EBPR.
- When the CFW was added, Geothrix fermentans appeared.

Remediation of membrane fouling in a vertical MBR

Objective and Scope

Ax/Ox series MBR

Operating conditions: lab-scale MBRs

Parameter	Ax/Ox set	ries MBR	Ax/Ox ver	tical MBR		
	Anoxic zone	Oxic zone	Anoxic zone	Oxic zone		
SRT	30 c	lays	ays 30 days			
HRT	3 hours	5 hours	3 hours	5 hours		
Working volume	61	101	121	201		
Permeate flux	6.2 L	/m²/h	6.2 L/m²/h			
Operation mode	Suction (8 min)) + Idle (2 min)	Suction (8 min) + Idle (2 min)			
Internal recycle rate	400)%	400%			
Average MLSS	4.34 g/l	4.61 g/l	5.68 g/l	2.21 g/l		
ORP	-63 mV	+314 mV	-147 mV	+257 mV		

- Organic source = <u>glucose</u>

- COD : N : P = 160 : 40 : 6

Operating conditions: pilot-scale vertical MBR

Results and Discussion

Variations of flux and TMP in the

MBR

Variations of flux and TMP in the pilot-scale vertical MBR

Effect of EPS concentration on fouling at various HRTs

Effect of particle size on fouling at various HRTs

Schematic diagrams of fouling remediation techniques

High pressure air-punch		High pressure Air backwashing			
Category	Air punch	Air backwashing			
Designed permeate flux	18.6 L/m²/h (= $0.45 \text{ m}^3/\text{m}^2/\text{day}$)				
Air flow rate	5 L/m²/min				
Operation mode	Suction (8 min) + fouling remediation (2 min)				

Membrane bioreactor

Fouling remediation by outside air supply

Fouling remediation by inside air supply

Summary of Results

- 1. <u>Series MBR</u> vs. <u>Vertical MBR</u> (SRT = 30 days)
- Vertical-type MBR; relatively low MLSS concentration (EPS and viscosity) → reduce membrane fouling !
- Cake layer resistance was about 60-70% of the total resistance
- 2. Lab-scale vs. Pilot-scale vertical MBR
 - Pilot-scale showed relatively higher values of EPS and viscosity, smaller particle size → severe fouling !
 - In pilot-scale MBR (HRT=10 \rightarrow 8 \rightarrow 6 \rightarrow 4 hrs);
 - → EPS content and particle size increased
 - → Cake layer resistance appeared to be the controlling factor of the total resistance
- 3. Fouling remediation
 - The inside air supply was more efficient than the outside air supply.

Final Conclusions

THANK YOU!

QUESTION?

Enhanced Biological Phosphorus Removal (EBPR)

