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Parameters of actioninaMBR

Biological parameters: » Hydraulic parameters:

only one: SRT | 1) aeration rate and

Wgat stratelgyffor dggc?” aeration frequency.

and control of unsteady - .

state operation: 2) perlodl_ ¢ backwashing

Design for maximum organic or relaxation

load? * Variation of these

'CgStZ'C'iitg% some storage parameters depending on
DAty the transmembrane

|sanincrease of SRT or a :

decrease of sludge pressure evolution.

concentration always

profitable?
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* MF: theoretically

UF or MF ?

more permeable.

 But more sensibleto
Internal irreversible

fouling
 LimitedinLog

Removal of bacteria

and viruses

e UF:most UF

membranes have a
permeability of 150-
200 I/h.M2 which
corresponds to 30-40
I/h.M2 for 0.2 bar.

Less sensibleto
Internal fouling.

Good removal of
bacteria and viruses
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Hydraulic parameters

 Influence of the aeration rate
e Bacwashing or relaxation?
* |Influence of the frequency .
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Figure5. Effect of air flow rate on the Rt/Rm ratio at

different activated sludge concentration.
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500d
Zee\Weed®
Cassette

0.04 um nominal poresize

hollow fibresin array
(pulled out above)

Arranged in stack

aerated from below MBR Workshop Sappo
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Kubota system layout

Installed Kubota Units
(after 2 months cperation)

0.4 um polyethylene flat
sheets welded to backing
plate

Situated above diffuser below
which air isinjected
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Permeate Flux (I/h.m?)

Fouling Curves
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Fouling rate (Pa/min)

Fouling Rate Determination
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Example of the choice of the permeate flux

g
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+ Hux at 20°C
+ Permeability at 20°C
Temperature

= Transmembrane pressure (psi)

T30
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Flux at 20°C (I/h/m?)
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| nfluence of the conditions of
aeration

The *cycling method”



Continuous Aeration Configuration
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Fouling rate (Pa/min)

Evolution of the Fouling Rate with the Air Flow
In Continuous Aeration
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Alir Cycling Configuration
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Fouling rate (Pa/min)
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Evolution of the Fouling Rate with the Cycling
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Advantages of Cyclic Aeration

o Unsteady State Generation

— Higher local aeration intensity, bigger bubbles
— Reduction of bubble by-pass between fiber bundles
— Increased contact between fibers and bubbles

 Density Gradients
— Lateral liquid flow through the fiber bundle
— Increased fiber movement
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Wastewater: Energy Consumption

OFiltration M Aeration

Cyclic aeratio»n

Energy (KWh/m3)
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Permeability (I/h.m?.bar)

Influence of Cycling for the Treatment of
Municipal Wastewater

Continuous aeration
: 0.68 m3/h.m? P Air cycling 10s-10s at 0.34 m3/h.m2 average
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Influence of Cycling for the Treatment
of Surface Water

Transition period
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Back washing or relaxation

e Backwashing:
» Probably more eff
out

» A pump is needed

Iclent

» Consumption of treated
water and risk of back

clogging
» More stressing for
membranes

« Relaxation:
» Simple (only one valve)

» Useful for modules which
cannot be backwashed, but

» More important duration
than backwashing and
thus productivity decrease.

> Lessefficient
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'tl)'ra;nsf er ﬁnha?lced Periodic backwashes
y two-phase flow cake destabilization
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|n both cases

 Periodic chlorination during this period isa
key parameter for long term membrane
operation : preventing the formation and at
least the growth of abiofilm
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Optimizing backwashing operation

Some recent experimental results



Influence of the periodicity of backwashing

Resistance vs Time
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Evolution of the fouling rate between 2 successive backwashes

Fouling Rate vs Time
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Relation between short term fouling rate and resistance

Fouling Rate wvs Resistance
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Influence of cumulative permeate volume produced

Cumulative Permeate Produced (L) vs Resistance
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Evolution of “irreversible” fouling

Restistance after Backwash vs Time
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Relaxation

« Very often the condition of relaxation are
not optimal .

 Modification of apilot unit for optimizing
the conditions of relaxation
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Modification for optimal relaxation

Feed
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12 inches diameter Outside/in module
A large membrane area for large scale
applications ( Polymem)




Wastewater MBR application
|mmem process

Submer ged modules ver sus

non submerged modules

— Maintenance and safety problems
for submerged systems

— Polymem choiceisfor dead end
filtration with continuous air
scrubbing, periodic backwash with
submerged or non submerged
modules with a preference for non
submerged modules
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Pilot filtration capability adapted to lab use 10 to 100 Liter per day 1. Capital and_ Operatio_n COS_tS re_ductio_n .
Dead-end hollow fiber ultrafiltration with periodic
backwashes
Membrane material adapted to frequent Polysulfone hollow fiber membranes 2. Process Safety and rellabllty lmprovements
chemical cleaning Membranes housed

in modules shells located outside the bioreactor

Membrane modules surfaces adapted to lab 0.1 m2to 0.3 m?, from MF to UF

demands
Externalisation of the module has drastically
Separated air injection Fine bubbles for aeration, coarse bubbles reduced membrane maintenance duration while
for fibres. improving the health safety of the operators.
Filtration mode Pression, succion or gravity Easy Integrity testing

Example of the pilot scale unit installed in the lab of Prof.
Matrti Crespi, Intexter, Universidad Politécnica de Catalufia, Spain

Sludges

Sludges
disposal

+ Treated

Water

Do




|s there afuture for small scale MBR?



Why are small scale MBR
needed?

e They are aone of the solutions for going to
more decentralised approach of water
management.

* They are perfectly suited for onsite
wastewater reuse.

e The standards for treated wastewater
discharge are stricter and stricter : the
existing septic tanks are becoming obsolete
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Other reasons

The scaling down isin favour of membrane
processes compared to conventional

The cost of aseptic tank + tertiary treatment
(Nordic countries) isquite high : 10 000 Euros for
afamily

The cost of membranes and modulesis decreasing

Remote control isrealistic and already put in
opeation
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More about scaling down effect

The most recently designed large scale MBR have a
capacity of about 24 000 M 3/d.

These plants are competitive with conventional wastewater
treatment plant + additional tertiary treatment.

Upscaling coefficient is between 0.4 to 0.8 for membrane
processes (decreasing with the size of the unit) : it is
smaller (closeto 0.4 ) for conventional processes.

Membrane processes should be more competitive than
conventional ones for small scale units.
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TABLE 9. Comparison of MBR and Activated sludge Process (From MRC,
1998).

Assumption Wastewater flow : 20m3h
BOD of wastewater : 2000 mg/L
BOD of treated water : 20 mg/L

MBR (Submerged Type) Conventional Activated
Sludge Process

Plant area (m?) Flowrate control tank 13.4 | Flow rate control tank  13.4
ASA-tank! 20.0 | ASA-tank? 66.7
Sedimentation tank 5.0
Pre-sedimentation tank  10.0
Sedimentation tank 1.7
Thickener 135
Total 110.3

Total 334
Energy electric power (kW) Fine screen 0.1 Fine screen 0.1
Flow control pump 0.25 |Flow control pump 0.25
Flow control blower 0.4 | Flow control blower 04
Blower for aeration 3.7 | Blower for aeration 55
Suction pump 0.2
Total electric power 4.65 | Total electric power 6.25
Sludge (m8) Quantity (per day) 0.0693 | Quantity (per day) 0.966
Running cost electrical® ($/day) 8.37 11.25
Sludge treatments ($/day) 34.65 48.30
Running cost 2% 100 %
Space 30 % 100 %

1 Activated sludge aeration tank (load 2 kg/m? day)

2 Activated sludge aeration tank (load 0.6 kg/m? day)

3 Thepricefor eectricity assumed at US $ 0.075 (Exchange rate of 40 B/$)
From MRC, 1997.




Low cost design for small scale
MBR

Low cost system for bubbling : hydro-
g ector ( venturi) , air-lift ?

Supported biomass for long periods of
Inactivity ( week ends, holydays)?
Sludge extraction?

Innovative design required , not just down
scaling of existing MBR.
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