Performance of Hybrid Submerged Membrane Bioreactor Combined with Pre-Coagulation/Sedimentation

Yoshimasa WATANABE

Department of Urban and Environmental Engineering, Hokkaido University, Japan

New urban water metabolic system

Development of elemental technology

•Advanced water purification process for membrane filtration

•Development of hybrid wastewater treatment system

•Effective utilization and recycling of wastewater treatment sludge

The major part of the contaminants in municipal wastewater is associated with particles

		Upper;	size (μm)	Lower; % of total		
		Classification				
	-	Soluble	Colloidal	Supra colloidal	Settle able	
Marani et al.,	COD	< 0.2		0.2 <		
2003.	162 - 392 mg/L	13 - 28		72 - 87		
Levine et al., 1985.	ТОС	< 0.1		0.1 <		
	76.5 mg/L	30		70		
Itokawa et al.,	Sewage	< 0.1		0.1 <		
	COD 480 mg/L	22		78		
2003.	Primary clarifier effl.	< 0.1		0.1 <		
	COD 187 mg/L	39		61		
	BOD	<0.08	0.08-1	1-100	100 <	
	315 mg/L	40	16	28	15	
Balmat., 1957.	Biological oxidation rate 0.22 1/day	<0.08 0.39	0.08-1 0.22	1-100 0.09	100 < 0.08	
		Coagulation/sedimentation				
		Biological oxidation				

Hybrid wastewater treatment system

Treatability of organic matter

Classification of MBR

Cross-flow MBR 1970 ~

Submerged MBR 1990 ~

		CF-MBR	S-MBR
Energy consumption	(kWh/m³)	2 – 10	0.2 – 0.4
Operating pressure	(kPa)	100 – 200	< 50
Permeate flux	(m³/m²/day)	1 – 2	0.1 – 0.5
Membrane		UF	MF

Submerged membrane bioreactor

Submerged membrane bioreactor

Advantages

- High quality of treated water
- High solid/liquid separation
- Smaller footprint

Disadvantage

Membrane fouling

caused by dissolved organic matter (DOM)

Previous studies by other researchers

- •Laboratory scale experiment
- •Short-tem experiment
- •Synthetic wastewater

It is not clear whether experimental results obtained in the previous studies can be applied to operation of real-world MBRs.

Objectives

Hybrid submerged membrane bioreactor

Pre-coagulation/sedimentation and

membrane bioreactor

Pilot scale experiments were carried out to investigate;
Effect of pre-coagulation/sedimentation on MBR in terms of permeate quality and membrane fouling.
Influence of dissolved organic matter (DOM) on membrane fouling in MBR.

Hybrid MBR system

Coagulation/sedimentation unit

Jet Mixed Separator

Rotating disc membrane (UF)

Follow fiber membrane (MF) Flat membrane (MF)

Submerged membrane bioreactor

VSEP (NF)

Flow diagram of the pilot plant

Operating conditions of the JMS

Flow rate 50 m³/day HRT 1.5 hr Coagulant PSI : Poly Silicato Iron 10 mg-Fe/L

Conventional MBR (CMBR) Primary clarifier effluent – MBR Hybrid MBR (HMBR) Primary clarifier effluent – JMS – MBR

Characteristics of the raw water fed to MBRs

		Primary clarifier effluent	JMS effluent	Removal efficiency (%)
Turbidity	(NTU)	53.2	9.0	83
тос	(mg/L)	35.3	16.7	53
DOC	(mg/L)	20.6	12.9	37
T-N	(mg/L)	29.7	20.7	30
NH4 ⁻ +N	(mg/L)	13.6	12.1	11
T-P	(mg/L)	2.6	0.6	77
Alkalinity	(mg/L)	127.6	87.5	-
рН		7.1 - 8.5	6.3 - 7.2	

Removal efficiency in terms of turbidity, TOC, and T-P determined for precoagulation/sedimentation was attained to 83%, 53%, and 77%, respectively.

Submerged membrane bioreactor

Operating conditions of the MBRs

		HMBR 1	HMBR 2	CMBR 1	CMBR 2
HRT	(hour)	4.5-6.0	3.6-4.5	4.5-6.0	3.6-6.0
MLSS conc.	(g/L)	2 - 4	10 <	2 - 4	10 <
MLVSS/MLSS		0.6	0.6	0.7	0.7
Flux	(m/day)	0.3-0.4	0.4-0.5	0.3-0.4	0.3-0.5
Pore size (μm)			0	.4	

Changes in water temperature and MLSS concentrations.

•MLSS concentration in HMBR1 and CMBR1 was attempted to be kept around 2 – 4 g/L.

•Until 148 days of the operation, MLSS concentration in HMBR 2 and CMBR 2 was not controlled and consequently increased with operation time.

•After day 148, MLSS concentration in HMBR2 and CMBR2 was attempted to be kept around 15 g/L

Accumulation frequency of TOC concentration in the permeate

Average TOC concentration in the permeate obtained from HMBR2 was 3.0 mg/L.

Biodegradability of DOC in the treated water

Water quality in various processes

		Primary clarifier	JMS		Perm	neate	
		effluent	Effluent	HMBR 1	HMBR 2	CMBR 1	CMBR 2
Turbidity	(NTU)	53.2	9.0	0.0	0.0	0.0	0.0
тос	(mg/L)	35.3	16.7	4.6	3.0	5.0	4.2
T-N	(mg/L)	25.4	17.9	16.9	16.5	18.8	18.4
NH ₄ + - N	(mg/L)	13.6	12.1	3.1	1.8	0.7	0.6
T-P	(mg/L)	2.6	0.6	0.03	0.03	0.39	0.58
Alkalinity	(mg/L)	127.6	87.5	8.8	4.0	20.7	27.0
рН		7.1-8.5	6.3-7.2	4.3-7.4	4.0-7.0	6.3-7.4	6.0-7.6

Concentration of 17β -estradiol (E2) in various processes

Effect of microbial activity on E2 concentration

	Sample	E2(ng/l)	DOC(mg/I)
No.1	Dissolved E2 of mixed Liquor	0.95	4.05
	Extracted from activated sludge	12.10	-
	Permeate	1.06	2.78
No.2	Dissolved E2 of mixed Liquor	7.07	16.24
	Extracted from activated sludge	20.84	-
	Permeate	3.49	4.27
A.S	Dissolved E2 of mixed Liquor	9.90	16.63
	Extracted from activated sludge	8.36	-

Operating conditions of the hollow fiber MBRsNo.1HMBR: MLSS 8g/I: HRT 5.2hNo.2CMBR: MLSS 8g/I: HRT 6h

Evaluation of membrane fouling

Definition of membrane fouling

- •Reversible fouling can be canceled by physical membrane cleaning.
- Membrane module was taken out from the membrane chamber and washed by spraying pressurized water.
- •Irreversible fouling can be canceled by chemical membrane cleaning.
- Membrane module was soaked in hydrochloric acid (pH2) and subsequently in solution of sodium hypochlorite for 24 hours.

Membrane permeability (MLSS conc. 2 - 4 g/L)

By reducing permeate flux, rapid increase of filtration resistance in CMBR1 was observed while increase rate of filtration resistance in HMBR1 was retarded.

Membrane permeability (MLSS conc. 2 - 4 g/L)

•By changing air scrubbing condition, rapid increase of filtration resistance in CMBR1 was observed.

•In contrast with the results with GMBR1, relatively high membrane permeability was maintained with HMBR1.

DOC concentration of mixed liquor

Higher DOC concentration in CMBR probably corresponded to more rapid increase of filtration resistance in CMBR.

Treatability of organic carbon Membrane fouling

Fraction of DOC in the feed water

Removal efficiency of high molecular organic matter was higher than that low molecular organic matter.

Biodegradability of DOC in the feed water

Variation of transmembrane pressure(TMP) : MLSS > 8000 mg/L

Department of Urban and Environmental Engineering, Hokkaido University

Membrane permeability (MLSS conc. > 10 g/L)

Upper limit of MLSS concentration in CMBR

What control is suspension viscosity ?

- Upper limit of MLSS concentration for an efficient operation in CMBR was suggested to be around 10 g/L.
- When a MBR is used as the HMBR, higher MLSS concentration would be applicable.

Sample

Activated sludge, Conventional MBR sludge, Hybrid MBR sludge

Suspension viscosity is controlled by MLSS conc. and floc size.

Operating conditions of the MBRs

		HMBR	CMBR	
HRT	(hour)	4.5		
MLSS conc.	(g/L)	10		
Flux	(m/day)	0.4		
Pore size	(μm)	0.2		
Suction mode		Suction for 12 min., Stop for 3 mir Continuous air scrubbing		

Influence of DOM (dissolved organic matter) on membrane fouling was investigated.

Changes in the total membrane filtration resistance

Influence of DOC on membrane fouling

Higher DOC concentration corresponded to more rapid increase of filtration resistance.

Influence of DOM on membrane fouling

To get the information of mechanisms in membrane fouling , deadend test was carried out.

Filtration membrane characteristics						
Pore size 0.1 μm						
Diameter	58.5 cm					
Filtration area	26.9 cm ²					
Operating conditions						
Operating pressure 40 kPa						
Rotation of stirring rod	300 rpm					

Samples

→ Biomass suspension

Resistance = SS+colloid+soluble

After centrifugation
Resistance = colloid+soluble

Biomass suspension was centrifuged at 3,000 rpm for 5min.

After filtration

Resistance = soluble

Biomass suspension was filtered with a membrane with nominal pore size of 0.5 μ m.

	Biomass suspension		After centrifugation		After filtration	
	CMBR	HMBR	CMBR	HMBR	CMBR	HMBR
SS	9,400	10,420	_*	148	_*	_*
тос	_ *	_*	21.1	83.8	6.2	11.9
Carbohydrate	1444	1995	13.5	89.1	6.4	21.2
Protein	4250	3726	13.5	94.8	0.0	7.0

unit (mg/L) -* not determined

- * * not detected

Particle size distribution

*Particle size distribution in the supernatant collected from CMBR could not be determined due to the detection limit of the analyzer (particle concentration was too low).

Changes in the permeate flux

For all the test, fouling resistances were determined by Darcy' law. (30 min. of filtration)

Resistance caused by membrane fouling for each sample

	CMBR	HMBR
Biomass suspension (SS+colloid+soluble)	2.8	6.0
After centrifugation (colloid+soluble)	2.3	5.3
After filtration by 0.5 μ m (soluble)	1.8	1.5
		unit (10 ¹² /m)

Contributions of each fraction in the total membrane fouling

Conclusions

Water quality of whole system

		Activated sludge process	CMBR	HMBR	HMBR (N removal)
Turbidity	(NTU)	< 10	0	0	0
тос	(mg/L)	< 10	< 6	< 4	< 4
T-N	(mg/L)	< 15	< 18	< 16	< 10
NH ₄ +-N	(mg/L)	< 3.0	< 1.0	< 3.0	< 1.0
T-P	(mg/L)	< 0.5	< 1.0	< 0.1	< 0.1

•Hybrid MBR : DOC concentration was less than 4.0 mg/L. BDOC concentration was almost zero. Total phosphorus concentration was less than 0.1 mg/L.

Conclusions

Pilot scale experiments were carried out to examine membrane fouling occurring in MBR with or without pre-coagulation/sedimentation. The influence of suspension viscosity and DOM on membrane fouling was investigated.

- Pre-coagulation/sedimentation process improved the performance of MBR by reducing both reversible fouling and irreversible fouling.
- In order to efficiently operate a MBR, suspension viscosity in the membrane chamber should be maintained as low as possible. Suspension viscosity was controlled by MLSS concentration and floc size.
- DOM such as carbohydrate and protein seemed to be not important in interpreting membrane fouling in MBRs.
- Colloidal fraction in biomass suspension played an important role in membrane fouling.

Membrane permeability (MLSS conc. 2 - 4 g/L)

•When deterioration in membrane permeability became significant, deposition of biomass suspension on the membrane surface was not recognized and chemical cleaning was needed.

Irreversible fouling

•In contrast with the results with CMBR1, relatively high membrane permeability was maintained with HMBR1.

Membrane permeability (MLSS conc. > 10 g/L)

Rapid increase of filtration resistance in CMBR2 was observed while that in HMBR2 was stable operation.

Relationship between MLSS conc. and suspension viscosity.

Suspension viscosity of CMBR was greater than that of HMBR

In order to efficiently operate a MBR, suspension viscosity in the membrane chamber should be maintained as low as possible.

Filtration spectrum

	▼ T	ЕМ ◀	SEM	Optic	al microsco	pe ◀ Visibl	e to naked eye
Micrometers	0.0	p01 0	.01 0	,1 1.	, <mark>0 1</mark>	0 10	0 1000
Molecular Wt.	100	1000	0 100000	10000	000		
Typical	Flu ac	uvic ids imic ids	fr	Cell agments Bac	teria I	Hui Algae, Pro	Sand nan hair
organic constituents in municipal wastewater	Nutrients Amino acids	Polys	A Viruse	s DNA		acterial flo	DCS
	Fatty acids						
Membrane	RO		UF				
separation		NF		<mark>אור וווי</mark>			
Various				Coagu /sedime	ulation entation	Sedi	mentation
wastewater						Filtra	tion
u caunent		Activa	ted slud	ge proce	SS		

Classification of contaminants in wastewater

Size Range		Classification					
		Soluble <0.025µm	Colloidal 0.025-3µm	Supracolloidal 3-106µm	Settleable >106µm		
BOD ₅	(% of total)	17	16	46	21		
COD	(% of total)	12	15	30	43		
тос	(% of total)	22	6	36	36		
Tot P	(% of total)	63	3	12	22		
Org.N	(% of total)	27	15	38	20		

After Munch, R. et al. (1980)

Percentage of total associated with suspended solids in the raw water at the Eskilstuna wastewater treatment plant in Sweden

Metal	Zn	Cu	Ni	Cr	Pb	Cd
%-suspended	51	48	13	71	71	82

After SWEP (1985)

Direct particle separation is effective way of lowering the wastewater contaminant level

Membrane permeability (MLSS conc. > 10 g/L)

Membrane permeability (MLSS conc. > 10 g/L)

Rapid increase of filtration resistance in CMBR2 was observed while that in HMBR2 was stable operation.

Influence of DOM such as carbohydrate and protein on membrane fouling

DOM = Carbohydrate + Protein + etc.....

No clear relationship between DOC and DOM was indicated.

DOM such as carbohydrate and protein would not be concerned with membrane fouling.