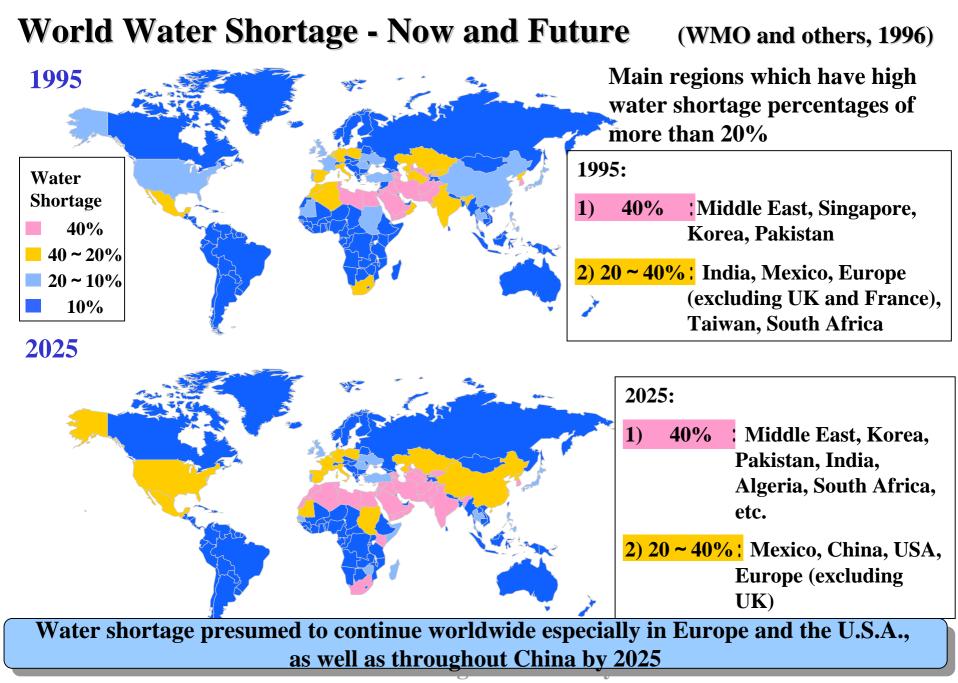
Focus on Membrane Technology for Water Treatment

Toray Industries, Inc. Masaru Kurihara

February 4, 2004

1. World Water Problem

Water Treatment Membranes
 RO Membranes & NF Membranes
 UF Membranes & MF Membranes
 Drinking Water Production -


5. Immersed Membranes for Wastewater Treatment

6. Conclusion

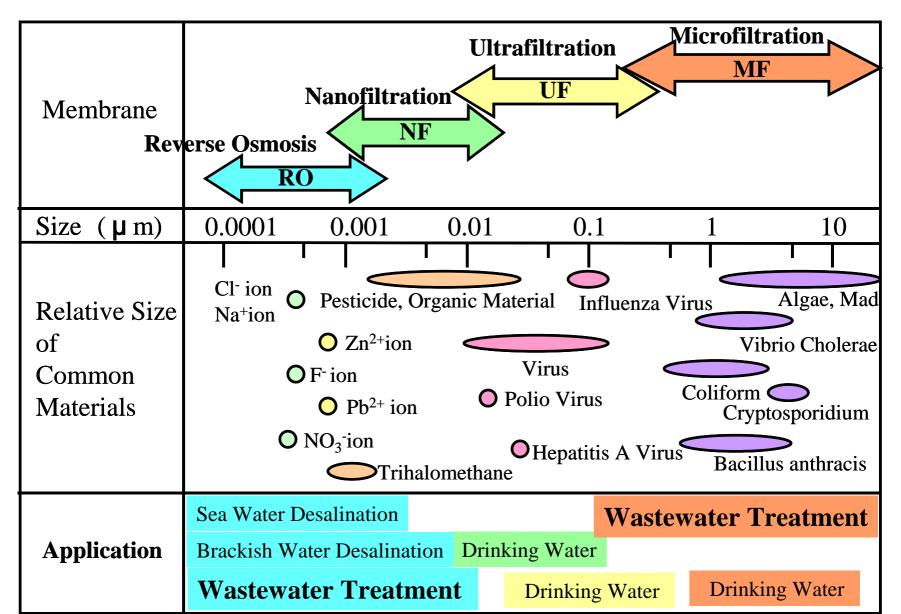
Toray – The Leader in "Advanced Materials"

Achieving High Growth by Constantly Supplying "Advanced Materials" – Developed with our Core Technologies – into our Three Growth Areas (an expansion of our four strategic business areas)

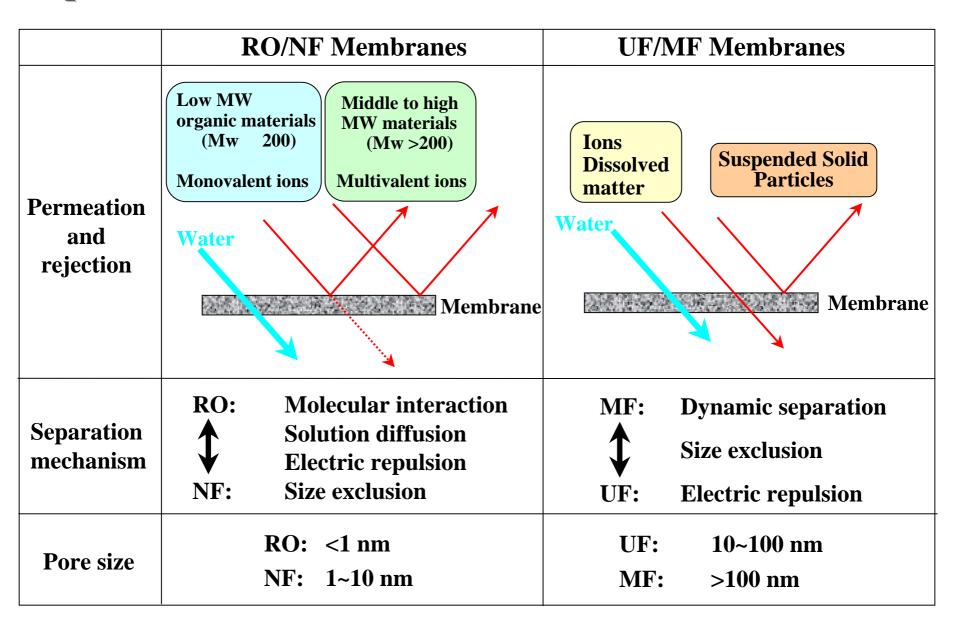
	<advanced materials=""> •Nanofibers</advanced>			Four Strategic
	•High-performance Fibers		<three areas="" growth=""></three>	Business Areas
<core technologies=""> Organic Synthetic</core>	and Resins •Nano-alloy Materials		IT-related Products	Electronics & Info- Related Products
<u>Chemistry</u>	•Advanced Electronics		,	
Polymer Chemistry	Materials •Biomaterials	\Box	Life Sciences	Pharmaceuticals
Biochemistry	•Separation Materials •High-performance Composite		Environment Safety	Water Treatment
	Materials Recycling Materials 		Amenity	Carbon Fiber

Water Problem and Membrane Technology

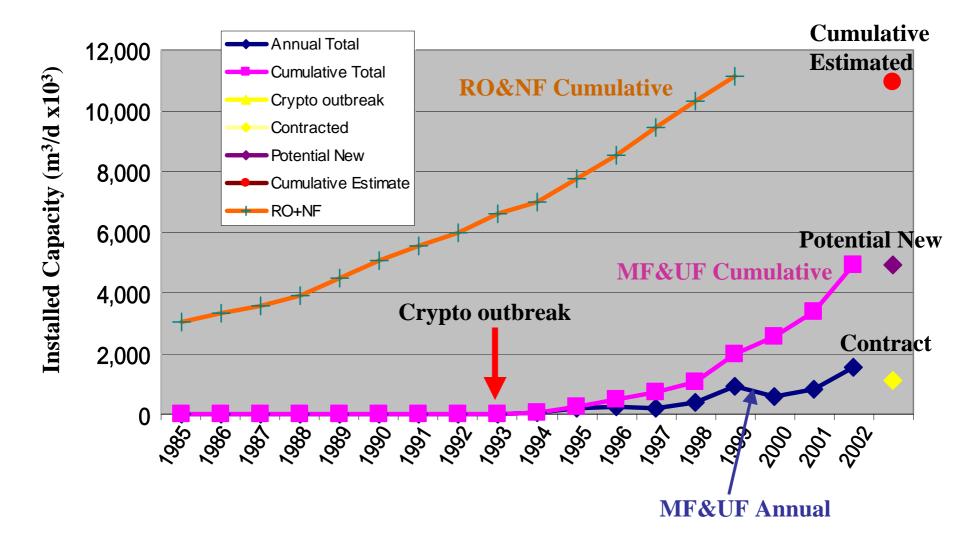
	Water F	Problem	Membrane Technology for Water Treatment				
Region, Country	Water Resource Shortage	Water Pollution	Fresh Water Treatment	Desalination	Wastewater Reuse & Reclamation		
United States	Problem	Problem	In operation	In operation	Construction		
Benelux		Problem	Being applied		In operation		
UK, France		Problem	In operation		Being applied		
Spain	Problem	Problem	Being applied	In operation	Being applied		
Saudi Arabia	Severe			In operation	Planning		
Kuwait	Severe			In operation	Construction		
China	Problem	Severe	Being applied	Being applied	Planning		
Singapore	Severe		In operation	In operation	In operation		
Japan		Problem	In operation	In operation			


Water resources are extending

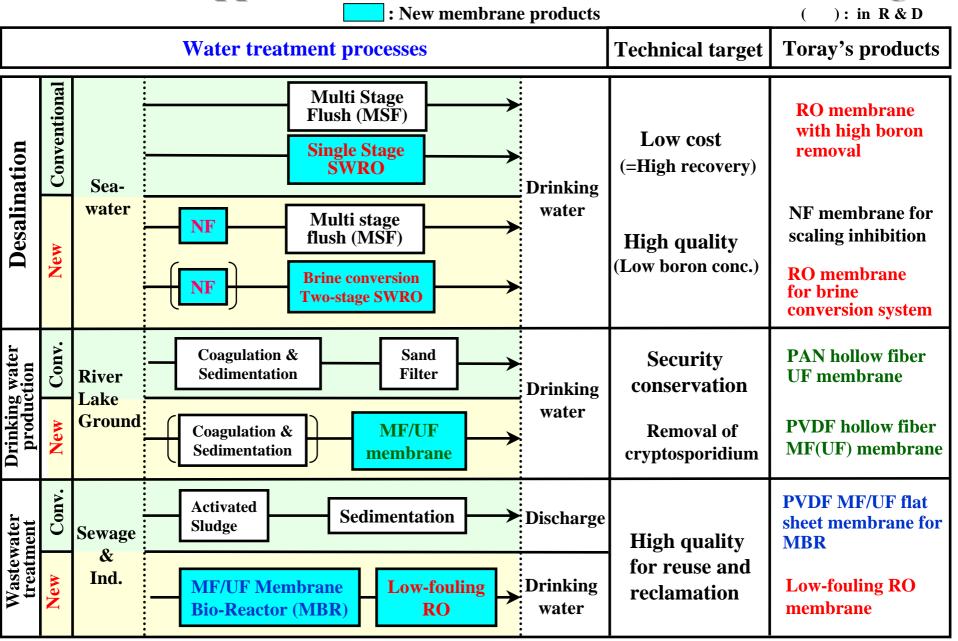
from fresh water to sea water & wastewater


Water Treatment Membranes

Membrane and Relative Size of Common Materials



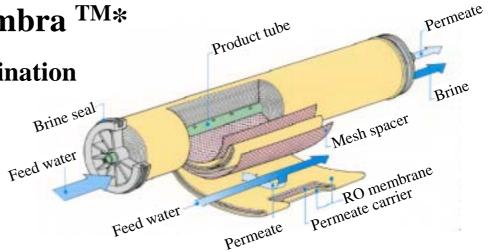
Separation Characteristics of Various Membranes



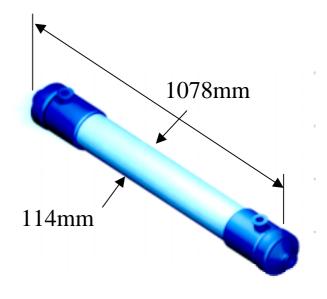
'TORAY'

Global Capacity of Membrane Filtration Plants

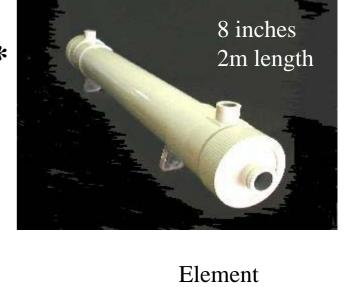
TORAY Membrane applications - Conventional & new technologies

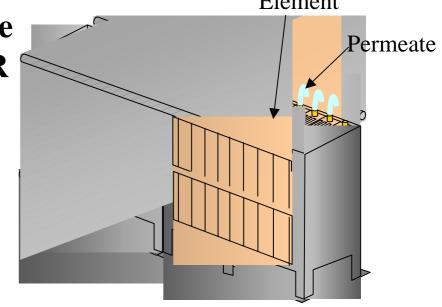


Toray's Membranes & Applications


1. RO & NF Membrane Romembra TM*

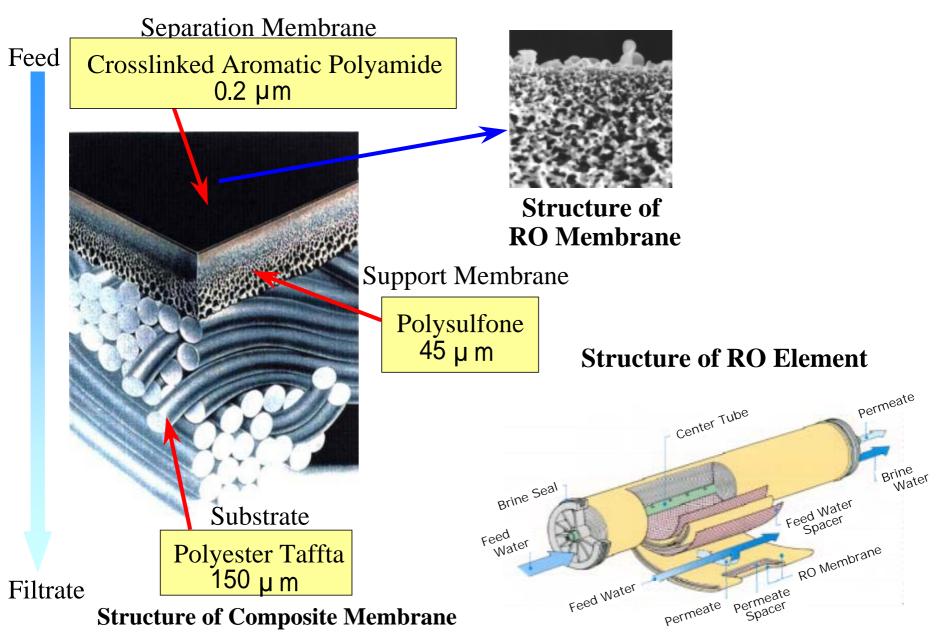
- 1) Seawater & Brackish Water Desalination
- 2) Ultra Pure Water Production
- 3) Harmful Material Removal
- 4) Wastewater Reuse

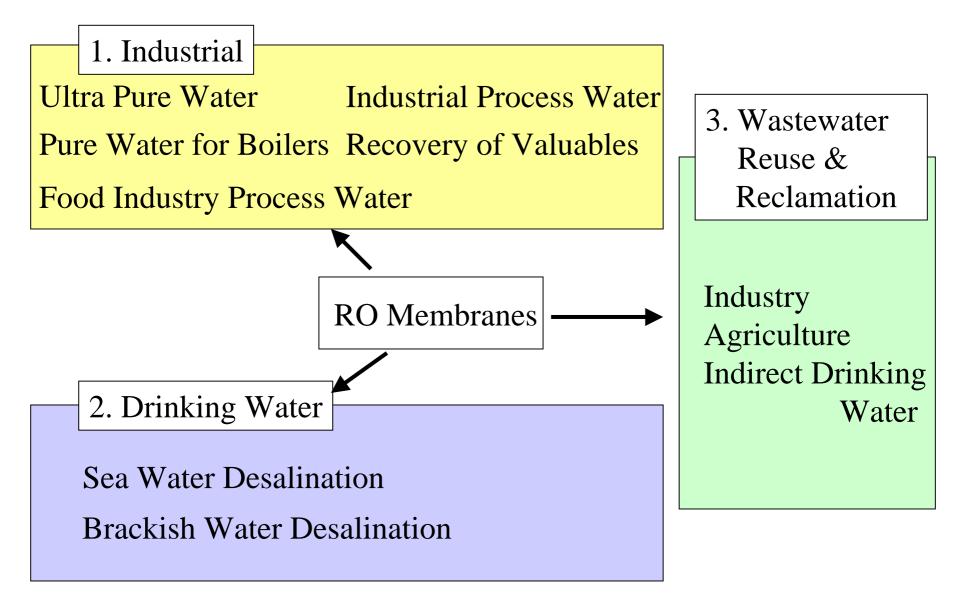

2. PAN Hollow Fiber UF Membrane Torayfil TM*


- 1) Industrial Process Water Production
- 2) Drinking Water Production
- 3) Wastewater Reuse

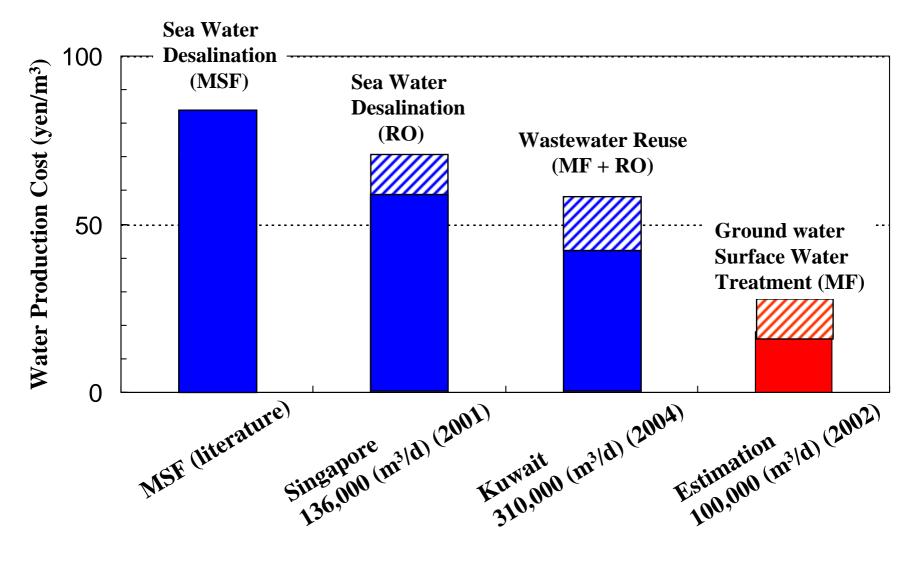
Toray's Membranes & Applications

- **3. PVDF Hollow Fiber MF Membrane** Torayfil-F TM*
 - 1) Drinking water production
 - 2) Industrial process water production
 - 3) Pre-treatment for seawater desalination
 - 4) Wastewater reuse
- 4. PVDF Flat Sheet MF Membrane for MBR
 - 1) Municipal and industrial wastewater treatment
 - 2) Municipal and industrial wastewater reuse




RO Membranes & NF Membranes

Structure of RO Membrane Element



Application of RO Membranes

Water Production Cost

Water Resource can be Chosen by Country

Progress of RO Seawater Desalination Plants

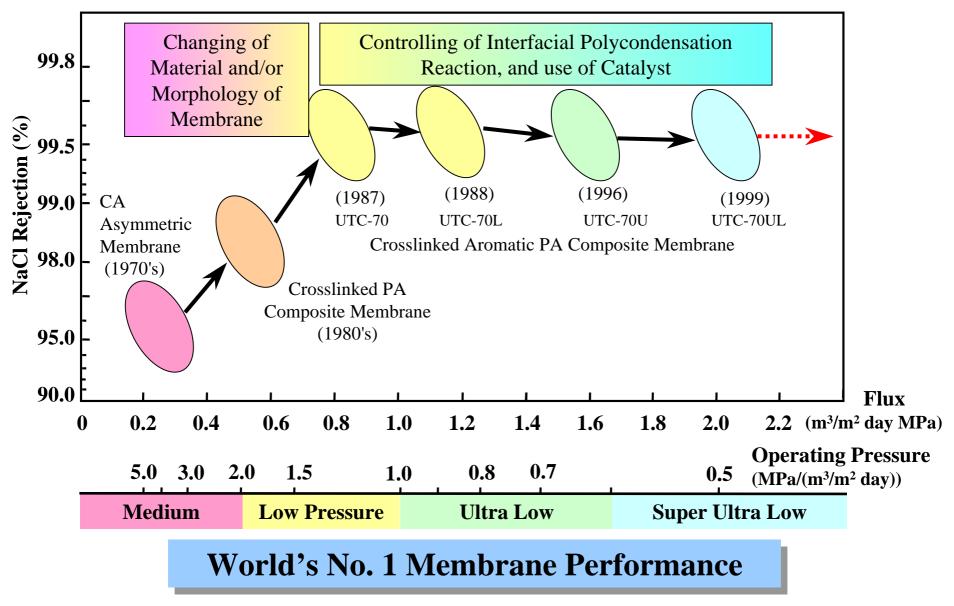
		1980's	1990's	2000's
Recovery	%	25	40 - 50	55 - 65
Operational Pressure	psig (MPa)	1,000 (6.9)	1,200 (8.25)	1,400 (9.7)
Product Water Quality (TDS)	mg/l	500	300	<200
Energy Consumption	kWh/kgal (kWh/m ³)	45 (12)	21 (5.5)	17.4 (4.6)

I. Moch, Pre-prints of ADA Conference in Lake Tahoe (2000)

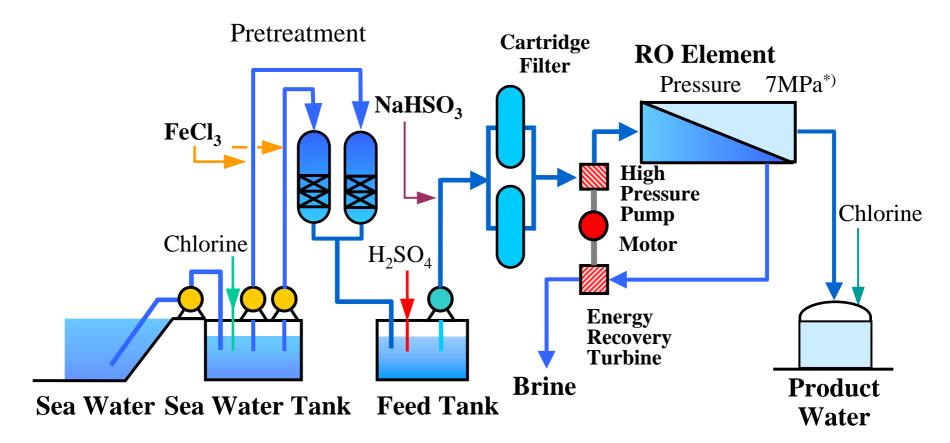
Progress of Membrane Technology Realized Good Quality & Energy Saving

Sea Water Desalination RO Membranes in Global Market

Module Type	Supplier	Product	Material	Morphology	
	Toray	SU-800		Composite Membrane	
Spiral	Dow/ Filmtech	SW-30	Crosslinked		
Spirai	Koch/ Fluidosystems	TFCL-HP	Aromatic Polyamide		
	Nitto Denko/ Hydranautics	NTR-SWC			
Hollow Fiber	Тоуово	HOLLOSEP	Cellulose Triacetate	Asymmetric Membrane	


Crosslinked aromatic polyamide/spiral module is global standard. Toyobo is the only hollow fiber module supplier. DuPont withdrew from the hollow fiber RO module business in March 2001.

Technological Trends of RO/NF Membranes


	erati essu		Super l	ow	Ultra low	Low	High	Ult	ra high	- Notes	
	MPa	-	0.3	0.5	1.	0 2	2.0	5.5	10.0	itotes	
SWRO	2nd stg.			Recovery = 60%							
S	1st stg.	osmosis			High TDS removal High boron removal						
BW	RO	Reverse os	Lower pr	essure	Cost reduction Low-fouling						
Ultra	pure water	Rev				N Co.				High TOC removal High quality Cost reduction	
Waste	water reuse			D Co., N Co., H Co.						Low-fouling Cost reduction	
	11. of water O Product.	Vanofiltration) Co., N	Co.					Toxic mat. removal Cost reduction	
Pre-	i SWRO		2 D by Tor	ray	D Co. : D	Dow N C	o. : Nitto	Denko	H Co	Scale removal	

TORAY

Progress of RO Membrane Performance

Conventional One-Stage RO Sea Water Desalination System

*) Spiral element

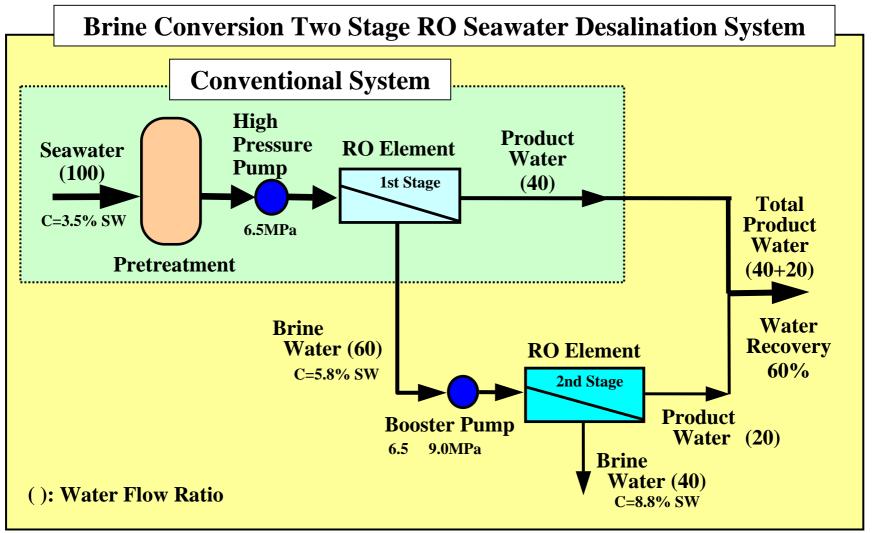
Okinawa Sea Water Desalination Plant

(Capacity: 40,000 m³/d, 1996)

40,000m³/d: Tap water for 160,000 people

RO Module Installation (each unit produces 5,000m³/d)

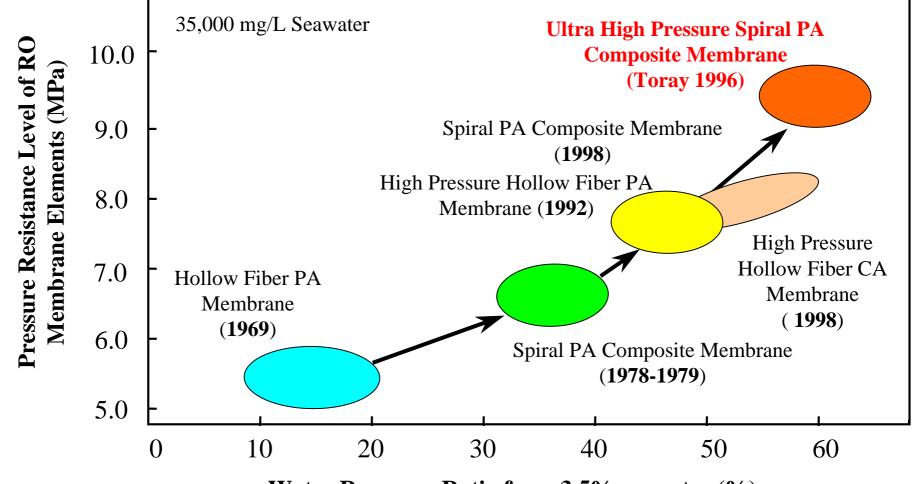
Toray Module is used in Japan's Largest Plant


Largest Sea Water Desalination Plants in the World

\sum	Country	Location	Capacity (m3/d)	Operation (year)	Plant Supplier	Membrane Supplier
1	Israel	Ashkelon	272,520	2004	OTID/ IDE/ OTV	Dow
2	UAE	Taweelah	227,300	2006	Toray/ Mitsui/ Veolia	Toray
3	UAE	Fujairah	170,000	2003	ONDEO	Hydra
4	Israel	Ashdod	137,000	2004	Ionics	Toray
5	Trinidad and Tobago	Point Lisa	136,000	2002	Ionics	Toray
5	Singapore	Tuas	136,000	2004	Hyflux	(Toray)
7	Mexico	Hermosillo	128,690	2004	IDE/ IL	-
8	Saudi Arabia	Yanbu	128,000	1995	Mitsubishi	Тоуово
9	Spain	Carboneras	120,000	2001	ABENS/ONDEO/PRI	Hydra
10	USA	Tampa	94,625	2003	COVANTA	Hydra
11	Saudi Arabia	Al Jubail III	90,909	2000	PWT	DuPont/Toray

* DuPont withdrew from RO business in 2001

RO sea water desalination seems very difficult in theArabian Gulf, because troubles occurred at all of DuPont's RO plants. Al Jubail III is the first successful plant.


Typical Flow Diagram of Brine Conversion Two Stage RO TORAY Seawater Desalination System

Toray's Patent:

Japanese Patent Application 1994-245184(1994), US: 6187200(2001), CA: 216033(2001), RC: 302294(1997), AU: 691649(1998), EU(granted 2002), KR: 204608(1999), Pending - JP, CH

Performance Trends of RO Membranes for Seawater Desalination

Water Recovery Ratio from 3.5% seawater (%)

World No. 1 Membrane Performance for Sea Water Desalination

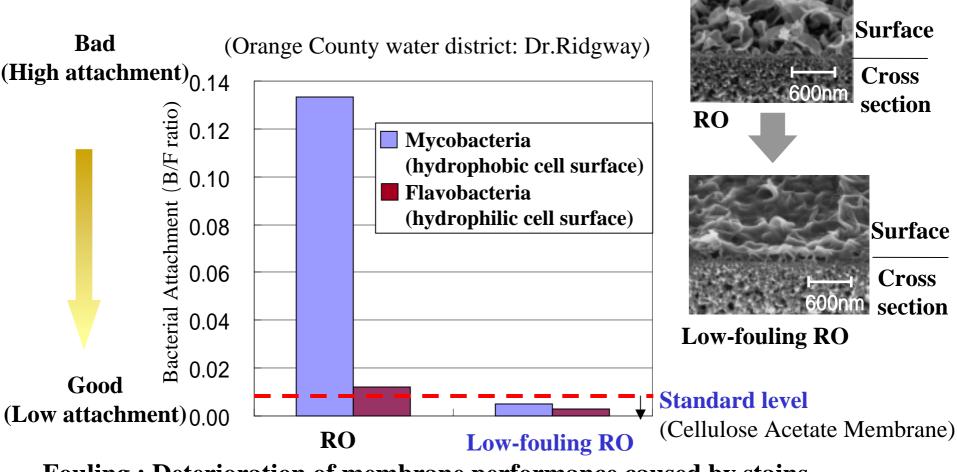
Global Installations of Toray Sea Water Desalination ROs

KAE Curacao (Netherlands Antilles) 11,400 (m3/d)

Mas PalomasMas Palomas(Spain Canary Island)(Spain Canary Islands)No. 1 Plant 4,500 (m3/d)No. 2, 3 Plant 9,000 (m3/d)

Tortola (British Virgin Islands) 690 (m3/d)

Okinawa (Japan) 40,000 (m3/d)


:Toray's 2-Stage RO Systems :Conventional RO Systems

Trinidad and Tobago 136,000 (m3/d)

Al Jubail (Saudi Arabia) 91,000 (m3/d)

Results of Membrane Biofouling (MBP) Assay

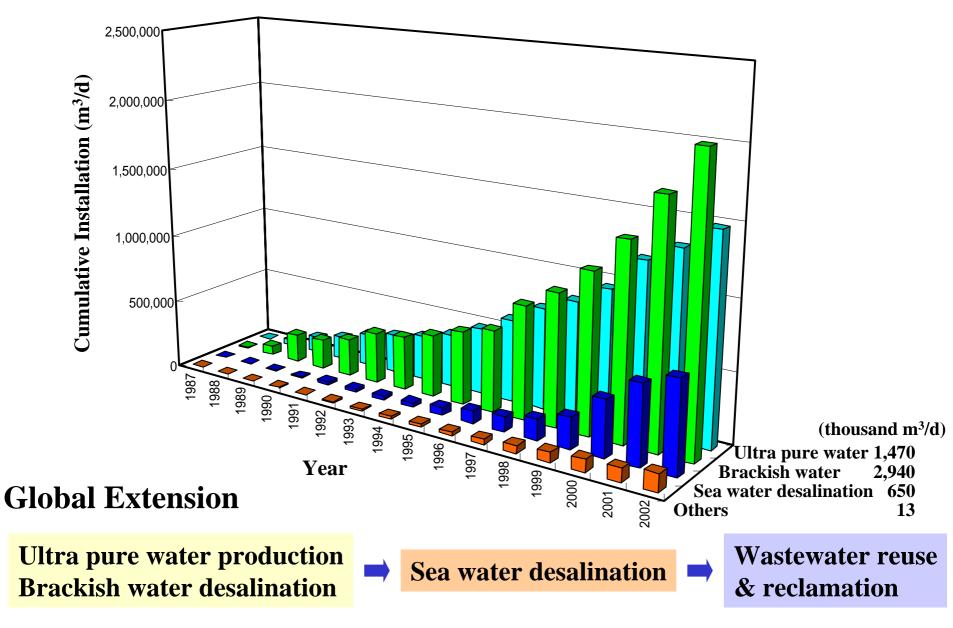
Fouling : Deterioration of membrane performance caused by stains

Toray less-fouling RO membrane has extremely low bacteria attachment

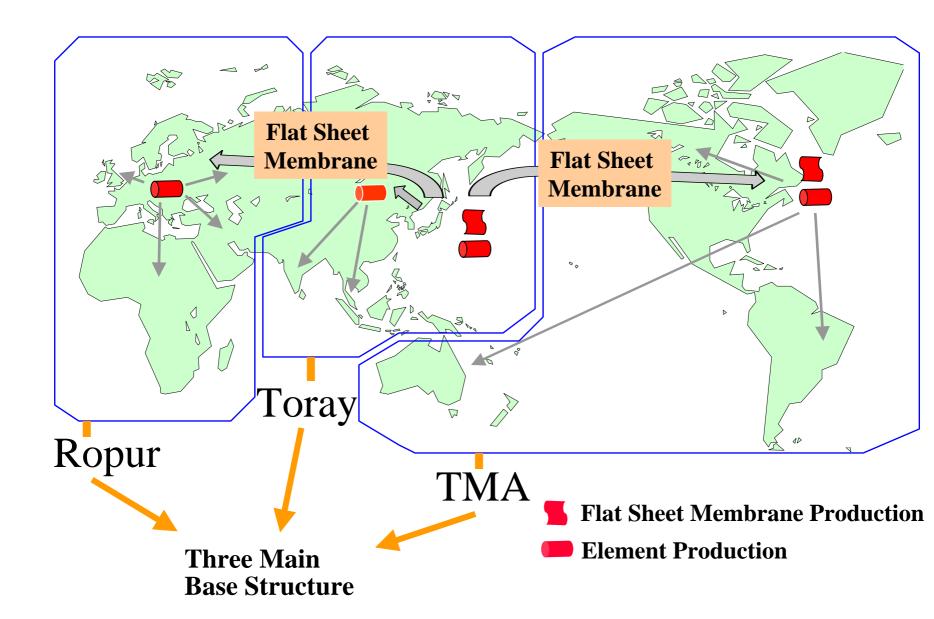
Wastewater Reclamation & Reuse Plants

	Wastewater -				RO Disinfectio Rec Reu	lamation
	Country	Location	Capacity	Operation	Plant	Membrane
			(m3/d)	Year	Supplier	Supplier
1	Kuwait	Sulaibiya	300,000	2003	IONICS	Toray
2	USA	CA Fountain Val	264,950	2004	PROJECT	
3	Singapore	Ulu Pandan	140,000	2004		
4	India	Chennai	135,000	1999	CAMP DRESSER	
5	USA	CA San Diego	75,000			
6	Spain	Almeria	42,000	2001	PRIDESA/INIMA	PERMETEC ES
7	Singapore	Kranji	40,000	2003	VEOLIA	Hydranautics
8	Singapore	Bedok	32,000	2003	HYFLUX	Hydranautics
9	Saudi Arabia	Jeddah	30,000	1990	BIWATER GB	DuPont
10	Korea		26,182	1996	IONICS US	Dow/Filmtec
11	Singapore	Seletar	24,000	2003	HYFLUX	Toray
12	Japan		22,984	1983	KURITA JP	Toray
13	USA	AZ Scottsdale	22,710	1998	ADVANCED ES USA	Koch

(Nov. 2003 :Based on IDA Inventory Report 2002)


Toray less-fouling RO was selected at the world's largest RO plant

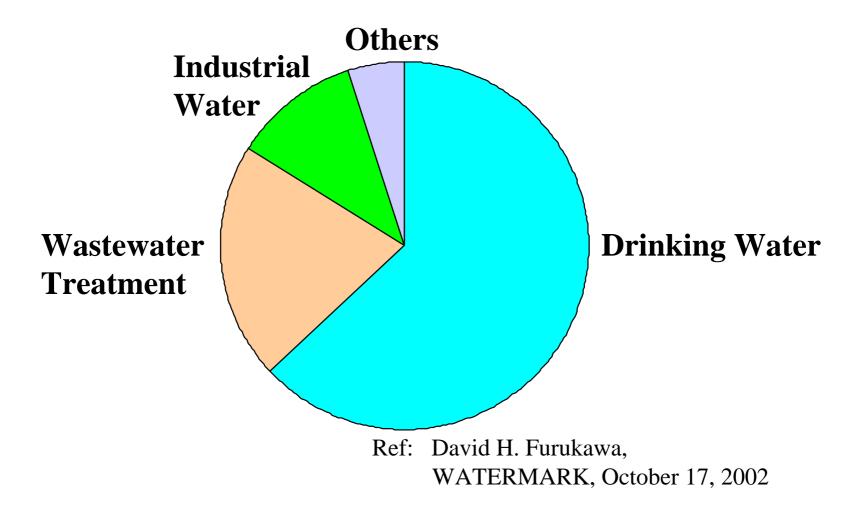
List of Large Water Treatment Plant using RO membrane (under operation or construction)


	Country	Location	Capacity	Raw Wate	User	Operating	Plant	Mmbrane
			(m3/d)			Year	Supplier	Supplier
1	Kuwait	Sulaibiya	310,000	Waste	Irrigation	2004	lonics	Toray
2	USA	AZ Yuma	276,672	Brackish	Discharge	1983	Fluid System	Koch
3	Israel	Ashkelon	272,520	Sea	Municipal	2004	OTID IDE OTV	Dow/Film Tec
4	USA	CA Fountain Val	264,950	Waste	Municipal	2004	Project	sellecton
5	UAE	Taweelah C RO	227,300	Sea	Municipal	2006	Toray/Mitsui/Veolia	Toray
6	UAE	Fujairah	170,000	Sea	Municipal	2003	ONDEO	Hydranautics
7	Spain	Malaga	165,000	Brackish	Municipal	2003	ABENSUR/ONDO	unkown
8	USA	FL Boca Raton	151,400	River	Municipal	2003	ADVANCED EWT	unkown
9	France	Mery-sur-Oise	140,000	River	Municipal	1999	OTV VIVENDI	Dow/FilmTec
10	Singapore	Ulpandan	140,000	Waste	Municipal	2004	PUB	selection
11	Israel	Ashdod	137,000	Sea	Municipal	2004	OTV/lonics	Toray
12	Singapore	Tuas	136,380	Sea	Municipal	2004	Hyflux	(Toray)
13	Oman	Sharqiya	136,000	Sea	Municipal	2004	Project	selection
14	Trinidad Tobago	Point Lisas	136,000	Sea	Industry	2002	lonics	Toray
15	India	Chennai	135,000	Waste	Industry	1999	Camp Dresser	unkown
16	Mexico	Hermosillo	128,690	Sea	Municipal	2004	IDE IL	selection
17	Saudi Arabia	Medina/Yanbu II	128,000	Sea	Municipal	1995	Mitsubishi	Toyobo
18	Spain	Carboneras	120,000	Sea	Municipal	2001	ABENS/ONDEO/PRI	Hydranautics
19	Saudi Arabia	Hail	105,980	Brackish	Municipal	1996	EMCO	SIDMAS

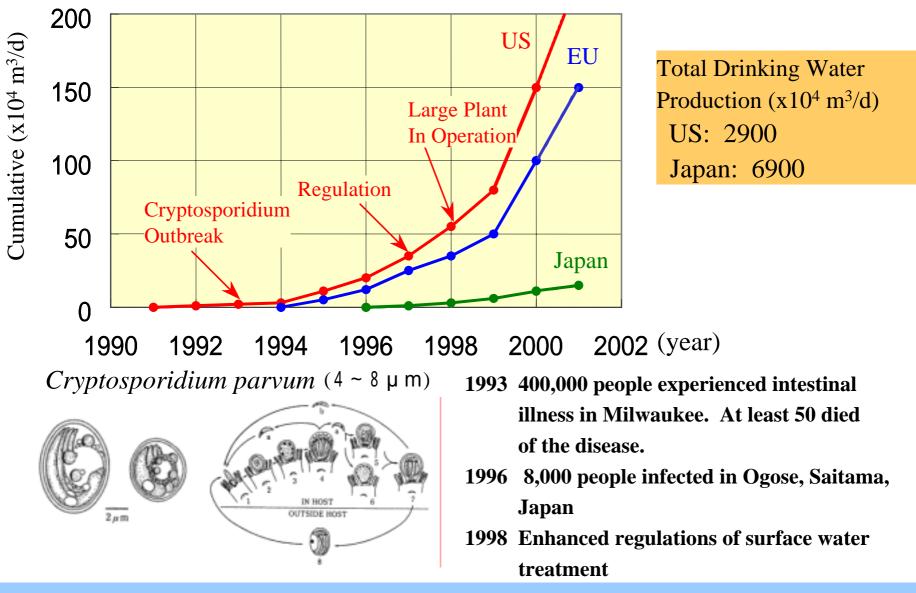
(Nov. 2003 ; Based on IDA Inventory Report 2002)

Cumulative Installations of Toray ROs by Application

Toray Group's Business Bases and Global Operations


Conclusion – RO•NF Membranes

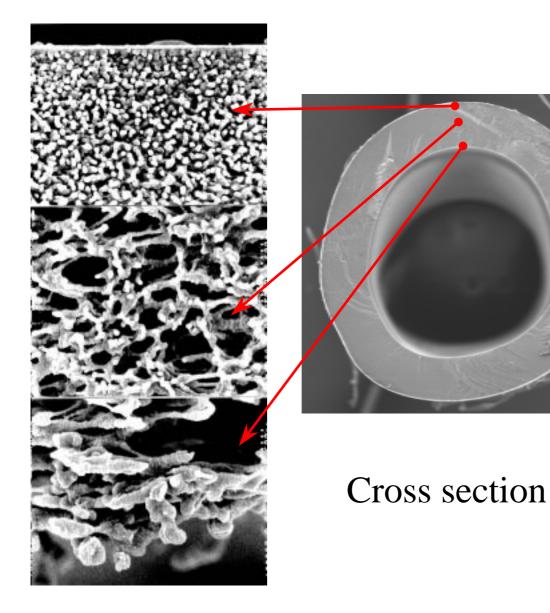
- 1. The RO seawater desalination system has entered a stable growth stage and the business is expanding steadily.
- 2. Wastewater reuse and reclamation is expected to be a new RO application.
- **3.** Expansion of the NF membrane businesses is expected in the pretreatment of seawater desalination, and in highly efficient water purification systems.


UF Membranes & MF Membranes - **Drinking Water Production** -

UF & MF Membranes – Breakdown of World Applications -

Total Water Production: 4.9 million m³/d

TORAY' Market for Hollow-fiber Membranes for Drinking Water Production

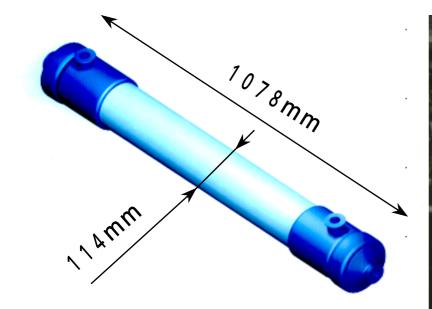

Enhancement of Pathogen Regulations caused Market Expansion

Membrane Filtration Plants for Drinking Water in Japan

	Capacity (m ³ /d)	Location	Engineering	Membrane Supplier	Installation (Year)
1	27,500	Tokyo, Hamura	Suido Kiko	Kuraray	2004
2	10,000	Tochigi, Imaichi	Orugano	Daiseru (UF)	2000
3	8,000		Suido Kiko	Toray (MF)	2003
4	6,200	Hokkaido, Nishisorachi	Orugano	Daiseru (UF)	1999
5	6,000	Miyagi, Onagawa	NKK	Memcore (MF)	2001
6	5,320	Aichi, Shinshiro	Orugano	Daiseru (UF)	2003
7	5,000		Suido Kiko	Toray (MF)	2002
7	5,000	Mie, Kiho	Ebara	Mitsubishi (MF)	2001
9	4,500	Gifu, Ena	Suido Kiko	Asahi Kasei (UF)	2001
10	4,000	Saitama, Ogose	Kurita	Kuraray (UF)	1998
11	2,400	Ooita, Notsu	Hitachi	Toray (UF)	1999
12	1,900	Fukui, Eiheiji	Maezawa	Toray (UF)	2001
13	1,900	Gunma, Showa	Suido Kiko	Asahi Kasei (UF)	2001
14	1,900	Fukui, Miyazaki	Suido Kiko	Asahi Kasei (UF)	2000

Application of UF/MF membranes is expanding in Japan Cumulative installations are 210,000 (m³/d) as of June 2003

PAN-based Hollow Fiber UF Membrane

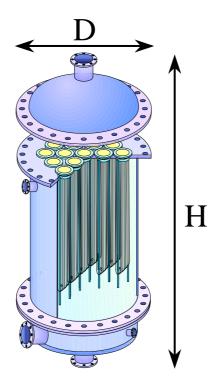


Pore size: 0.01 micrometer

Outer surface

Casing Type Module

Membrane area: 12 m² Water production: 10 m³/d



Drinking water production plant

Tank Type Module

Merit

- Low Initial Cost
- Small Footprint
- Easy Maintenance

Flux (m ³ /d)	70	200	500	800
Membrane area (m ²)	84	228	576	960
Diameter (D) (cm)	45	75	120	150
Height (H) (cm)	200	230	250	250

Design Concept of PVDF Hollow Fiber MF Membrane

Operation

- 1. High Water Flux
- 2. Low Operational Pressure
- 3. Frequent Physical Washing
- 4. Frequent Chemical Rinse

Functional Requirement

- 1. High Water Permeability
- 2. Precise Pore Size
- 3. High Physical Stability
- 4. Good Chemical Resistance

PVDF(Poly Vinylidene Fluoride) polymer is suitable

Performance of hollow fiber membrane depends highly on spinning process

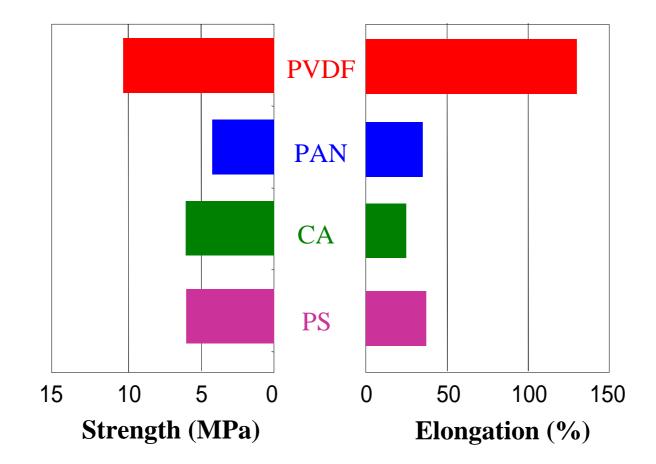
Proprietary spinning process

High Permeability & High Physical Strength

Toray PVDF Hollow Fiber Membrane

	Spinning Method	Feature	Outer surface Lumen
ming	Extraction Melt spinning with pore formation agent and extraction	High Strength High Cost	
Melt Spinning	Drawing Melt spinning and drawing	High Strength Low Cost	
Spinning	Non-solvent Induced Phase Separation Polymer solution is coagulated by non-solvent	UF/MF Applicable Low Cost Permeability and High-strength inconsistent	Water flow
Solution S	Thermally Induced Phase Separation Polymer solution is cooled down to phase separation temperature	High Strength High Flux Low Cost	

Comparison of Hollow Fiber Membrane with Other Companies


* Pure Water, at 50 kPa

Supplier	U Cor	npany	Z Company	N Company	A Company	Toray
Material	РР	PVDF	PVDF	PES	PVDF	PVDF
Permeability * (m ³ /m ² · d)	4.8	-	1.5	3.0	5.3	6.7
Membrane Area (m²)	30	-	56	35	50	72
Module						

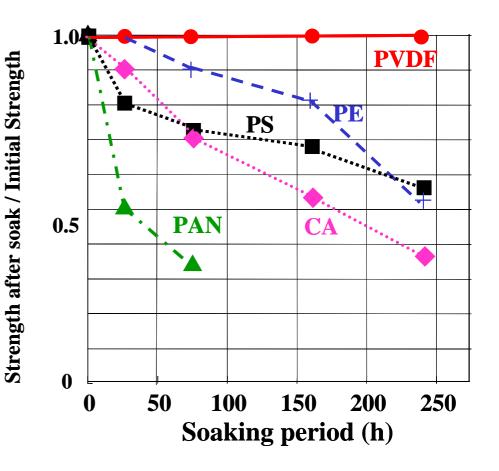
PP: Polypropylene, PVDF: Poly (Vinylidene Fluoride), PES: Poly (Ether Sulfone)

World's No. 1 Permeability and Largest Module

Comparison of Strength & Elongation - Membrane Material -

Physical property depends highly on material & spinning method

Comparison of Chemical Stability of PVDF Hollow Fiber -Accelerated Oxidation-


Purpose: Confirmation of stability against strong oxidation agent

Accelerated oxidation

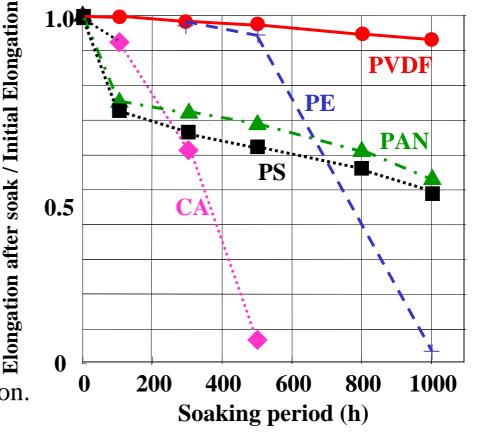
- 1. Evaluation of membrane configuration
- 2. Evaluation under cleaning condition
- (5,000 ppm as H_2O_2 with $FeSO_4$)

Results

- 1. PVDF-MF membrane is very stable under strong oxidation conditions.
- 2. PVDF-MF membrane can be cleaned with a concentrated oxidation agent.

Comparison of Oxidation Resistance

Comparison of Chlorine Resistance of PVDF Hollow Fiber

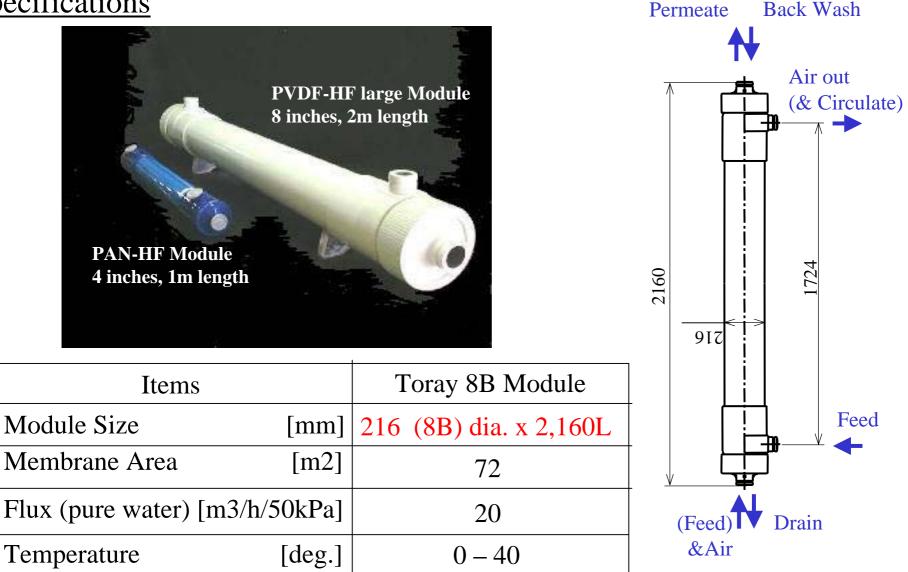

Purpose: Confirmation of stability against chlorine

Evaluation condition

- 1. Evaluation of membrane configuration
- 2. Evaluation **under cleaning condition**
 - (1,000 ppm as Chlorine, **pH=10**)

Results

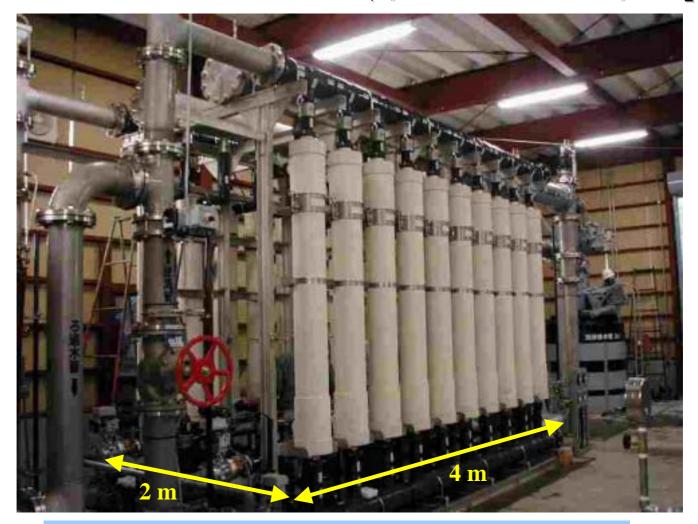
- 1. PVDF MF membrane is very stable in a concentrated chlorine solution.
- 2. PVDF-MF membrane can be cleaned with a concentrated chlorine solution.



Comparison of Chlorine Resistance

PVDF MF Membrane 8" Module

Specifications



HFM-2020 Standard Operational Conditions

Feed Water Type	Pretreated Water Clean Ground Water	River & Lake Surface Water
Filtration Flux (m ³ /m ² /d)	2 - 5	1 - 2
Backwash Condition	Flux: 1 - 2 times of filtration flux Chlorine dosing: 1 - 10 ppm Time: 30 – 60 sec. Frequency: every 0.3 – 2 h	
Scrubbing Condition	Air flow: 4 – 10 Nm ³ /h/Module Time: 30 – 120 sec. Frequency: every 0.3 – 2 h	
Operation Temp. (degrees C)		40
Operation pH	1 -	- 10
Chemical Cleaning	 (1) CIP (Clean In Place): every 3 - 6 months (2) Trans-Membrane pressure (3 - 5 times of initial, or 150 kPa (3) Chemicals: 1N-HCl + 3,000 ppm NaClO 	

Large Scale Ground Water Filtration Plant (5,000 m³/d, for 20,000 people)

Compact and High Productivity

Water Treatment Related National Projects

Year	Title	Toray's R&D Theme
1992	Project Membrane Aqua	
1993	Century 21 (MAC21)	
1994	New Membrane Aqua	·Highly efficient water purification system
1995	Century 21	utilizing NF membranes
1996	(MAC21)	(Toray Engineering Co.)
1997	Advanced Aqua Clean	[Search for New Technology Application of Membrane Filtration]
1998	Technology for the 21 st	• Development of efficient coagulation and sedimentation technology
1999	Century (ACT21)	to be applied in the UF pretreatment · Development of operational stability during the NF advanced water
2000		purification process
2001		[Development of Advanced Water Purification System of River Water] • Technological examination of combination of conventional water purification systems and membrane filtration
2002	Environmental,	Group 1: Development of large-capacity membrane filtration
2003	Ecological, Energy	technology (Kawai,Yokohama/Shinishikawa,Okinawa)
2004	Saving and Economical Water Purification	Group 2: Total water purification system
	System	(Ayase,Yokohama/Otokane,Fukuoka)
	(e-Water)	Group 3: Observation technology at the drinking water supply source

Participation in National Project (e-water) Water Drinking Production Plant Order Award Requirements:

- 1. Qualification of the Facility
- 3. Acquisition of National Licenses
- 2. Approval of Construction Work
- 4. Actual Experience in Plant Delivery

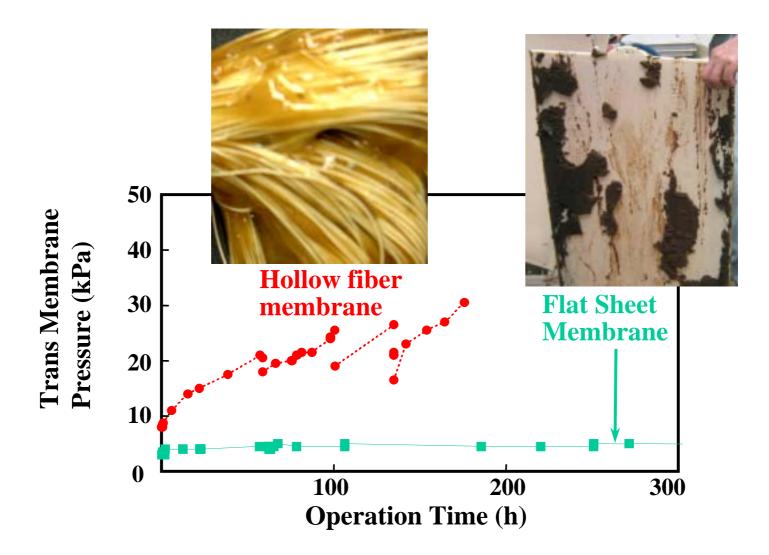
Water	Feed Water	Subject	Participants/
Purification Plant			Toray's Expected Role
Kawai, Yokohama June/03 ~ Mar/05	Fresh Water	 Comparative Experiments of 6 Groups, including Ebara <u>Case Trial - 200,000 m³/d</u> 	 Toray/Suido Kiko Joint Team Toray; Experiment Supervisor, Basic Design, Manufacture of Experimental Facility, Follow-up of Operations
Ayase, Yokohama Aug/03 ~ Mar/05	Fresh Water	•Examination of Appropriate Operating Conditions	 Co-R&D of 38 Companies Toray; Basic Design, Supply of PVDF Modules
Otogane, Fukuoka Sept/03 ~ Mar/05	Fresh Water	 Comparative Experiments of 5 Groups including Maezawa and Shinko Pantec <u>Case Trial - 110,000 m³/d</u> 	 Suido Kiko as the Supervisor Toray; Supplies PVDF Modules, Supports System Examination
Ishikawa, Okinawa Oct/03 ~ Mar/05	Fresh Water	 MF Pretreatment+NF Membrane (to confront Ozone + Activated Carbon Method) Only Successful Group to actually demonstrate use of membranes <u>Case Trial - 50,000 m³/d</u> 	 Nishihara; Supervisor, Joint Team of Suido Kiko, Ebara, Kubota, and Toray Toray; Basic Design and Supply of PVDF and NF Modules

Conclusion - UF/MF Membranes for Drinking Water

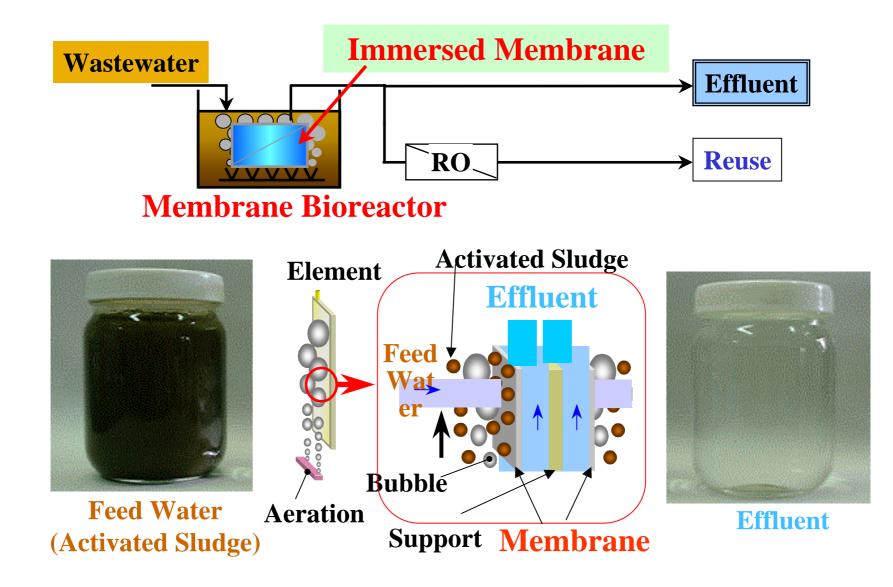
- 1. The Drinking Water Production Market is expanding rapidly, centering on the U.S. and Europe.
- 2. Toray has developed highly water-permeable and highly stable PVDF hollow fiber large modules suitable for drinking water production.
- **3.** Although still in the experimental stage, Toray's technology is highly appraised, and we are aiming to enter the market as soon as possible.

Immersed Membrane Modules for Wastewater Treatment

Merit of Membrane Bio-reactor


- **1. Good permeate quality**
 - 1) Low COD concentration
 - 2) Low total nitrogen and total phosphorous
 - 3) No suspended solid
 - 4) Removal of bacteria and viruses
- 2. Very space efficient design
- **3.** Considerable reduction of excess sludge
- 4. Reclamation of wastewater Integrated system with RO membrane

Flat Sheet Membrane or Hollow Fiber Membrane


Туре	Merit	Demerit
	Effective aeration per	Small membrane area
	footprint	per volume
Flat	Ease to remove	Difficulty for backwash
Sheet	fouling substances	
	Less pressure loss	
	Small dead space	
	Large membrane area	Inter-fiber fouling
Hollow	per volume	causes flux decline
Fiber	Backwash cleaning	& fiber damage

Flat Sheet Membrane or Hollow Fiber Membrane

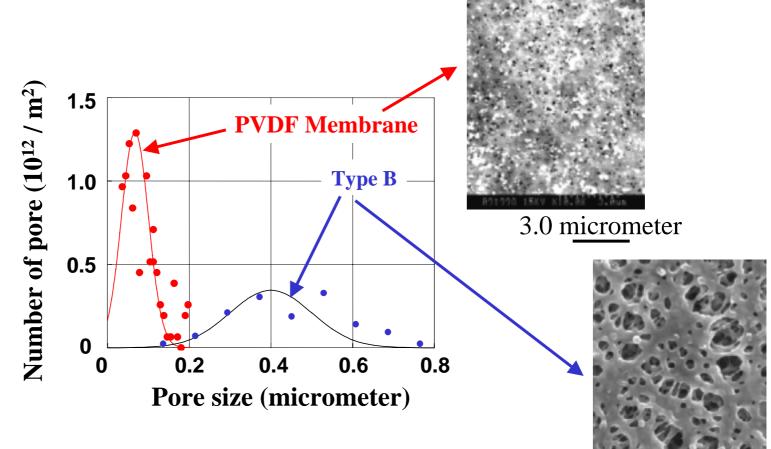
Industrial Wastewater Treatment Test

Flat Sheet Membrane Bioreactor

нн

Requirement and Design for Immersed Membrane

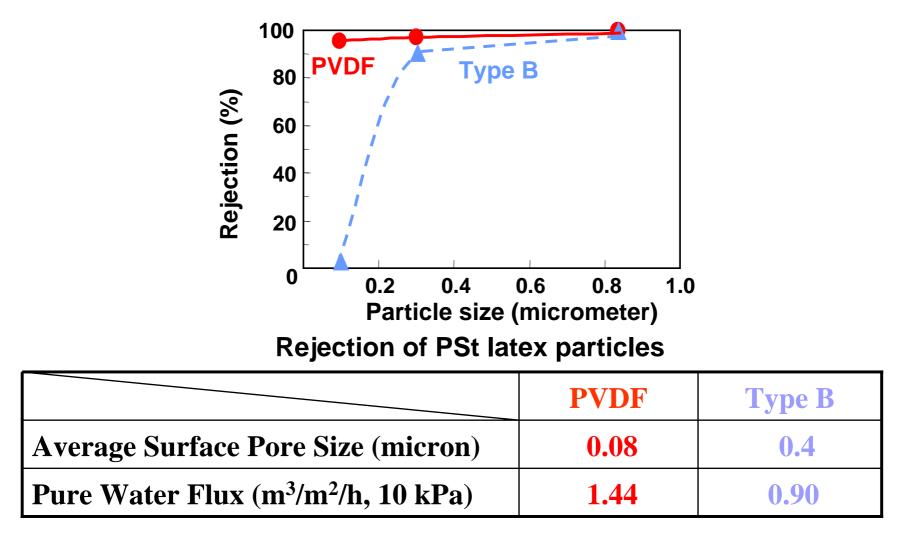
Requirement


- 1. Chemical and physical durability
- 2. High water permeability and high permeate quality
- **3. Prevention for clogging**

Design Concept

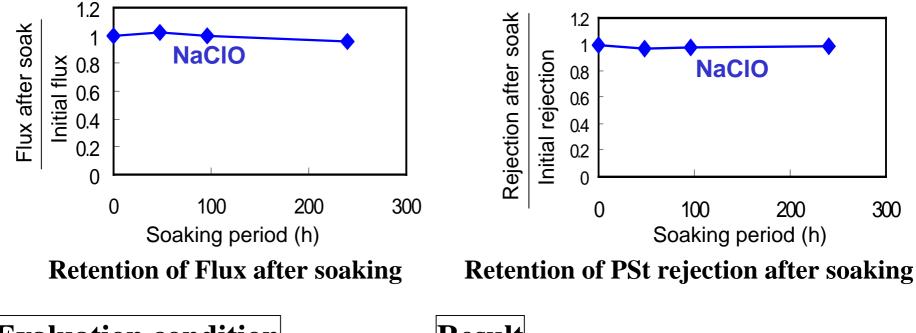
- 1. Membrane material : <u>Poly(vinylidene fluoride) (PVDF)</u> High stability for chemicals and high physical strength
- 2. Membrane form : Fiber reinforced membrane
- **3. Surface pore : 1) Small pore size**
 - 2) Narrow pore size distribution
 - 3) Large pore number

Pore size of Flat Sheet Membranes



Pore Size Distribution of Flat Sheet Membranes

3.0 micrometer


PVDF Flat Sheet Membrane Performance

PVDF membrane has small pore and high flux

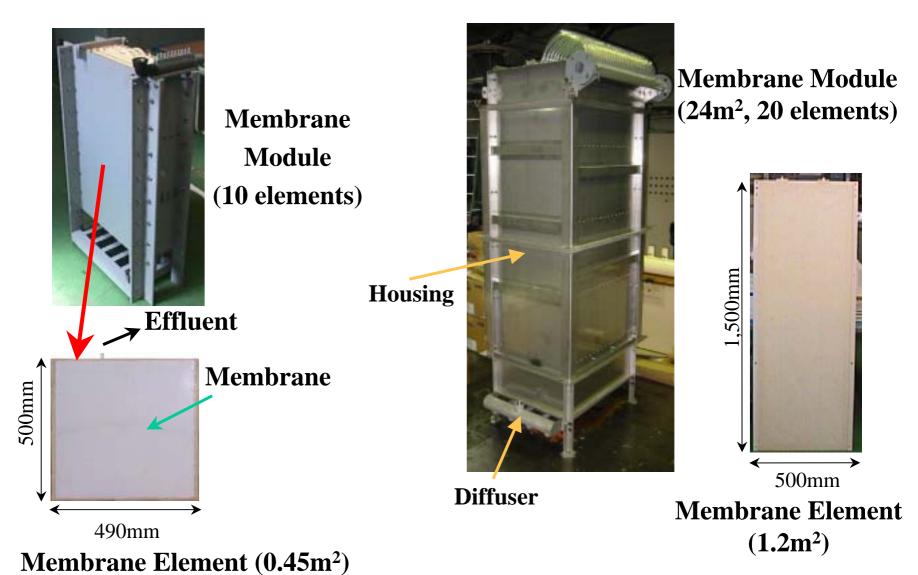
Chemical Resistance of PVDF Flat Sheet Membrane

Purpose: Confirmation of membrane stability for cleaning chemical

Evaluation condition

- Membrane configuration
 Under cleaning condition
 - (1,000ppm as Chlorine , pH=10)

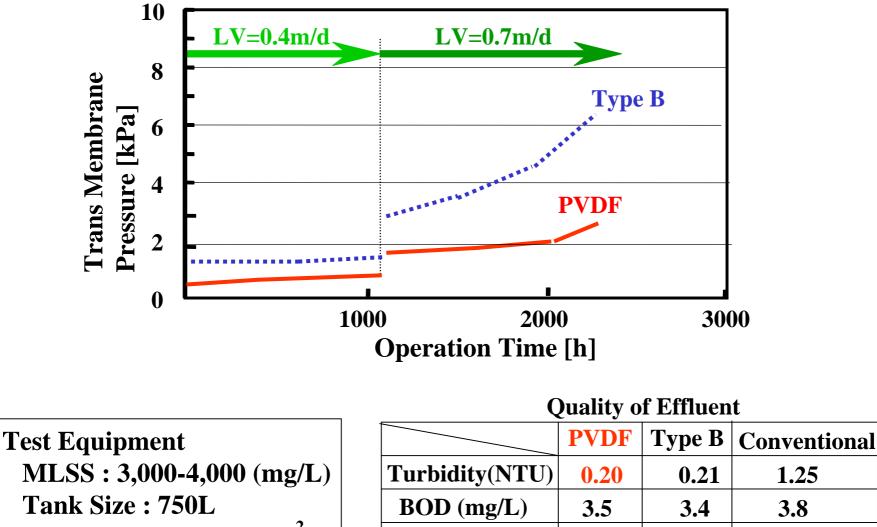
Result


- **PVDF MF membrane**
 - 1. is very stable in concentrated
 - chlorine solution
 - 2. can be cleaned with concentrated chlorine solution

Immersed Membrane Module

Small Test Module

Large Size Module


Module Type and Standard Operation Condition

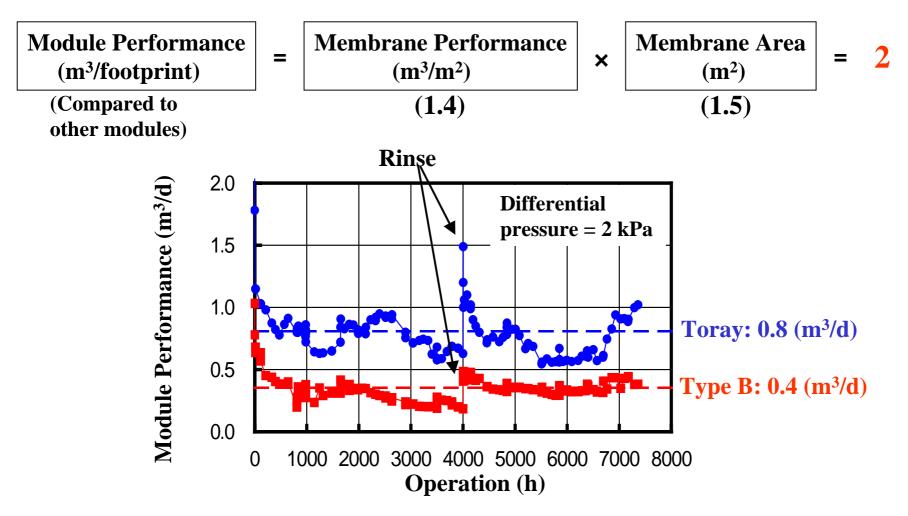
Module Type	Module type		M1	M2	M3
	Number of element		50	100	200
	Dimension	Width (m)	0.80	0.80	0.80
		Depth (m)	0.98	1.65	3.00
		Height (m)	2.20	2.20	2.20
	Housing		SUS		
	Material	Permeate manifold	PVC		
	Diffuser		PVC		

Standard operation condition

MLSS (mg/L)	3,000 - 20,000
Temperature (degree C)	5-40
рН	2 – 12
Operation flux (m ³ /m ² /d)	0.4 - 1.0
Air flow (NL/min/Element)	10 - 15
Filtration pressure (kPa)	< 50

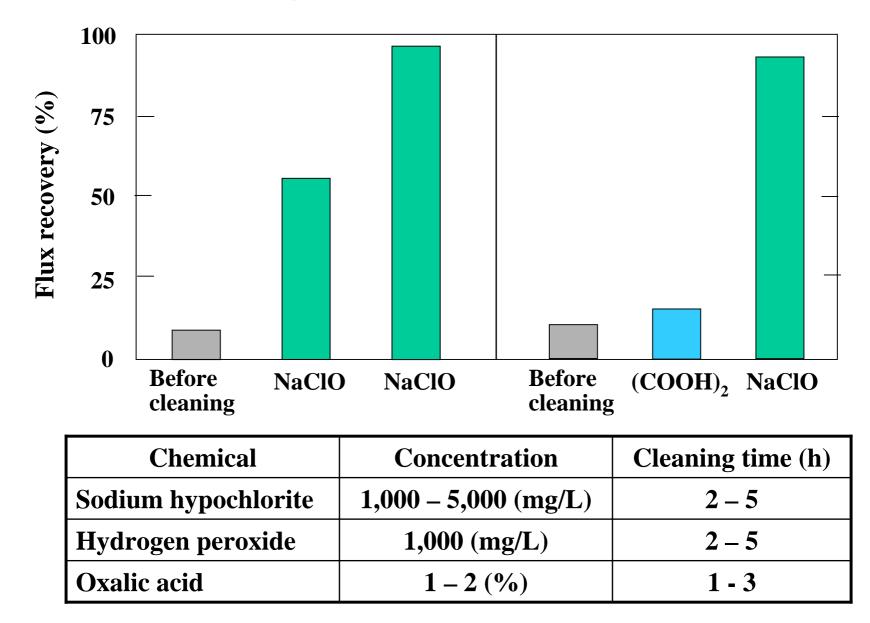
Sludge Filtration Test (Small Test Module)

COD (mg/L)


5.1

5.0

6.1


Membrane Area : 1.6 m²

Comparison of Module Performance

Toray module performance is twice as competent as others

Chemical Cleaning of PVDF Flat Sheet Membrane

TORAY' Pilot Test for Industrial Wastewater (Chemical plant)

Test conditions


Parameter	Unit	Value
Influent flow	m ³ /d	41 ~ 68
BOD of raw water	mg/l	180 ~ 430
MBR vessel capacity	m ³	5.5
MLSS	mg/l	12,000 ~ 20,000
Membrane area	m ²	137
Permeate water flux	$m^{3}/m^{2}/d$	0.30 ~ 0.50
Scouring air flow	Nm ³ /min	1.0 ~ 1.2
Temperature	Degree C	25 - 32

Appearance of MBR

Influent and effluent quality

Parameter	Unit	Influent	Effluent
pН	-	7.6	7.4
BOD	mg/l	230	4.6
COD	mg/l	140	8.4
SS	mg/l	15	None
Total nitrogen	mg/l	18.6	2.3
Total phosphorus	mg/l	0.3	0.06

Module installation

Pilot Test for Brewery Wastewater (Small test module)

Operation Condition

Parameter	Unit	Brewery
COD-Cr of raw water	mg/L	3,000
COD-Cr per sludge weight	kg-COD-Cr/kg-SS/d	0.08 - 0.10
MLSS	mg/L	4,000 - 5,500
Membrane area	m ²	6.0
Permeate water flux	m ³ /m ² /d	0.24
Temperature	degree C	12 - 15

Result

1. COD removal was more than 95 %

2. Suspended solid was removed completely

3. TMP was stabilized

Pilot Test for Municipal Wastewater

Operation Condition

Parameter	Unit	Municipal
COD-Cr of raw water	mg/L	275
COD-Cr per sludge weight	kg-COD-Cr/kg-SS/d	0.15 - 0.22
MLSS	mg/L	7,800 - 5,000
Membrane area	m ²	24
Permeate water flux	m ³ /m ² /d	0.53
Temperature	degree C	13 - 16

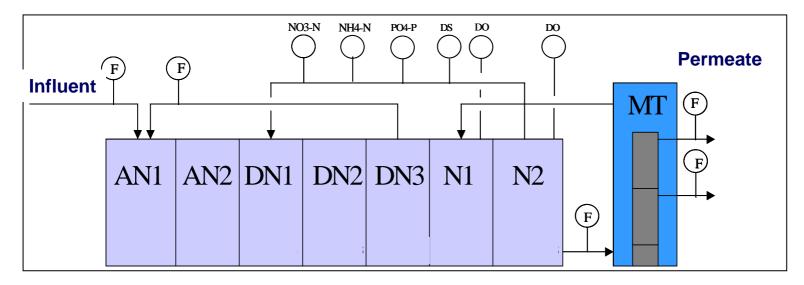
Result

1. COD removal was about 90 %

2. Suspended solid was removed completely

3. TMP was stabilized

Test for Municipal Wastewater


Pilot test started at Beverwijk WWTP in March 2003, cooperated with Seghers Keppel Technology Group (SKG)

Toray Uitwaterende Membrane element supply SINTER **SKG MBR** system design & build Operation applicated and the state of the second COLUMN A WAY Circonnole a DHA Water BS ALL REPORTS OF LAND Seghers Ko Seghers Keppel Grontmij Granturj Mitsabala www.seghersgroup.com STORK' Stole/Num Zennin Vedlightent, schoon uniter dream content on hor con het neur miles

Test for Municipal Wastewater (Beverwijk WWTP)

TORAY

System Configuration

AN= Anaerobic zone, DN= Anoxic zone, N= Nitrification zone, MT= Membrane tank

Design capacity (m ³ /d)	120
Membrane area (m ²)	137

TORAY Test for Municipal Wastewater (Beverwijk WWTP)

- **1.** After 6 months of operation, no fouling measured on membranes
- 2. No chemical cleaning necessary
- **3.** Without dosing chemicals the following effluent limits is reached
 - PO₄-P : 0.35 (mg/l)
 - NH₄-N : 0.10 (mg/l)
 - NO₃-N : 3.5 (mg/l)
- 4. Permeability is still more than 1,200 (l/m²/h/bar)
- 5. The following flux data were obtained compared with others

 $(l/m^2/h)$

	-		
	Toray	Α	В
Critical flux	85	40	45
Peak flux (Rain)	70	30	35
Average flux (Dry Weather)	20	10	12

(based on "Membrantechnik in der Wasseraufbereitung und Abwasser be handlung, Aachen, 2003")

Conclusion

- 1. Flat sheet type immersed membrane with high flux, small pore size and narrow pore size distribution has been developed.
- 2. Immersed membrane module was operated at low trans membrane pressure even in high activated sludge concentration.
- **3.** Permeability was recovered after chemical cleaning and there was no damage of membrane.
- 4. Pilot tests were carried out at several WWTP plants and operations were stable.

Conclusion

- Toray's Membrane Separation Technology for Water Treatment

- 1. Toray is a synthetic membrane manufacturer whose products cover all types RO, NF, UF, and MF.
- 2. Placing top priority on seawater desalination, drinking water production, and wastewater treatment, Toray intends to expand its membrane technology business throughout the world.
- 3. High water quality and an Integrated Membrane System (IMS), a combination of several membranes, is required in the future market. Toray, possessing all types of membranes, is in an advantageous position in expanding business utilizing the IMS.

Toray can contribute to ensuring sustainable water resources with membrane technology

Sea Water

River, Lake, Ground Water

Wastewater

