Adjustment and Reconciliation of Data or Design Values: Application of Fuzzy Optimization Concept

> Shinya Kikuchi, Ph.D., PE, Professor Department of Civil and Environmental Engineering University of Delaware Newark, Delaware 19716 USA Kikuchi@ce.udel.edu

> > August 2004

Nature of the Problem

- Inconsistency problem:
- **<u>Given:</u>** Available data does not support the underlying principle or required relationships.
- **<u>Objective:</u>** Adjust or reconcile the values so that the values are consistent with the principles and other relationships.

Inconsistency Problem Examples: Measured Outflow and Inflow Volumes

Nature of the Problem in General

Requirements for the values

$$\begin{split} &f_1 (x_1, x_2, x_3...) = Z_1 \\ &f_2 (x_1, x_2, x_3...) \approx Z_2 \\ &f_3 (x_1, x_2, x_3...) > \approx Z_3 \end{split}$$

Obtained data $(x_1, x_2, x_3, ...)$ $f_1(x_1, x_2, x_3, ...) \neq Z_1$ $f_2(x_1, x_2, x_3, ...)$ (Not \approx) Z_2 $f_3(x_1, x_2, x_3, ...)$ (Not $>\approx$) Z_3

Objective: Find x_1, x_2, x_3, \dots

Requirements for the Model

- Respects the initial values as much as possible.
- Incorporates the analyst's knowledge (hunch, accuracy and reliability of data collection, nature of relationships).
- Has the logical basis (explainable).
- Handles a large complicated situation (consistency).

Basic Concept of Model Formulation

APPROACH

Question: Select X, Y, Z

 $\mathbf{X} + \mathbf{Y} + \mathbf{Z} = \mathbf{D}$

Model Formulation

Max. h

Subject to:

 $h_{A}^{+}(x) > h \Rightarrow a_{1}x + b_{1} > h$ $h_{A}^{-}(x) > h \Rightarrow a_{2}x + b_{2} > h$ $h_{B}^{+}(y) > h \Rightarrow a_{3}y + b_{3} > h$

 $\mathbf{n}_{\mathbf{B}}(\mathbf{y}) > \mathbf{n} \rightarrow \mathbf{a}_{\mathbf{3}\mathbf{y}} + \mathbf{b}_{\mathbf{3}} > \mathbf{n}$

 $\mathbf{h}_{\mathbf{B}}(\mathbf{y}) > \mathbf{h} \Rightarrow \mathbf{a}_{4}\mathbf{y} + \mathbf{b}_{4} > \mathbf{h}$

 $\mathbf{h}_{\mathbf{C}}^{+}(\mathbf{z}) > \mathbf{h} \Longrightarrow \mathbf{a}_{\mathbf{5}}\mathbf{z} + \mathbf{b}_{\mathbf{5}} > \mathbf{h}$

 $\mathbf{h}_{\mathbf{C}}^{+}(\mathbf{z}) > \mathbf{h} \Longrightarrow \mathbf{a}_{\mathbf{5}}\mathbf{z} + \mathbf{b}_{\mathbf{6}} > \mathbf{h}$

 $\mathbf{x} + \mathbf{y} + \mathbf{z} = \mathbf{D}$

 $x, y, z \ge 0$

Example 1

Problem : Select, x, y, z, and w

Such that Min { $h_A(x)$, $h_B(y)$ and $h_C(z)$, $h_D(w)$ } is maximized

Example 2: Fitting to a Pre-determined Line

Overall h = 0.5

- I: x2 must be to the right of x1.
- **II:** x1 should be much greater than 0.
- III: x2 should be much less than 100.
- IV: x1 and x2 should be as far away as possible.
- V: x1 should be near 20.
- VI: x2 should be near 70.

- I: x_2 must be to the right of x1.
- **II:** x_1 should be much greater than 0.
- III: x_2 should be much less than 100.
- IV: x_1 and x_2 should be as far away as possible.
- V: $2 x_1 x_2 \approx 10$.

$$0 \qquad 100 \qquad 1000 \qquad 100 \qquad$$

Objective : max h

Example 5

Requirements

- P₁ and P₂ must be far away from each other
- P₁ and P₂ must be far away from the walls.
- P₂ must be to the right of P₁.

- P₁ and P₂ far away from each other.
- P₁ and P₂ far away from the X axis.
- P₁ and P₂ far away from the Y axis.
- Slope of line connecting P_1 and $P_2 = 0.5$.

Objective : max h

Ι

Constraints: X_2 - $X_1 > 0$ and Y_2 - $Y_1 > 0$

 $0 << Y_1$ $\mathbf{h}_{\mathbf{I}}(\mathbf{Y}_{1}) \geq \mathbf{h}$ 100 0 $\mathbf{h}_{\Pi}(\mathbf{X}_1) \geq \mathbf{h}$ $0 << X_1$ Π $\mathbf{h}_{\mathrm{III}}(\mathbf{X}_2) \geq \mathbf{h}$ III X2 << 100 0 100 $\mathbf{h}_{\mathrm{IV}}(\mathbf{Y}_2) \geq \mathbf{h}$ IV $Y_2 << 100$ **0**<< (X2- X1) $\mathbf{h}_{\mathbf{v}}(\mathbf{X}_2 - \mathbf{X}_1) \geq \mathbf{h}$ V

 $\mathbf{h}_{v_1}(\mathbf{Y}_2 - \mathbf{Y}_1) \geq \mathbf{h}$ **0**<< (Y2- Y1) VI

 $h_{v} = 0.5$ $h_{VI} = 0.25$

100

0

 $h_{T} = 0.25$

 $h_{II} = 0.25$

 $h_{III} = 0.25$

 $h_{IV} = 0.5$

VII **Slope of the line**

 $(Y_2 - Y_1) = 0.5(X_2 - X_1)$

Solution points are (25, 25), (75, 50) and $h^* = 0.25$

Rules:

Stay Far away from the walls.

Stay Far away from each other.

		Auto-ownership			
		0	1	2	3+
size	1				
hold	2				
ouse	3				
H	4+				

		Auto-ownership				
د م		0	1	2	3+	
l sizo	1					
hold	2					
ouse	3	-				
H	4+					

Fuzzy Decision Theory Option Deterministic or **Stochastic** (Alternative) Performance function Causal State Analysis Utility function Ranking **Fuzziness** and **Evaluation** ordering options Compensatory operators

Decision under Fuzzy Environment

Decision : Confluence of Goals and Constraints

LP formulation		
	Opt. Solution	
Max h		
Subject to:	x = 8.8	
$0.25x - 2 \ge h$	h=0.2 (satisfaction)	
$-0.25x+2.4 \ge h$		
x>0, h>0		

Framework of Fuzzy Decision Model

Expansion to Fuzzy Dynamic Programming

Applications

Adjustment of data for consistency

Traffic volumes, transit ridership data in a network Travel forecast data (e.g., trip generation, travel time).

Reconstruction of data based on memory

Trip diary consistency.

Selection of design values

Space allocation, budget allocation by communication. Parameter specification.

Scheduling activities under multiple constraints

Transit schedule coordination (timed transfer problem).

Decisions in Transportation Problem

Objectives and Constraints:Vague and elastic

Objectives (desires) and constraints are many and not welldefined.

Each constraint and goal represents the interest of different constituent.

The edge of the constraint and goal is usually fuzzy; a notion of "tolerance" exist.

Solution: usually a compromise

Different parties' satisfaction levels need to be considered.

The process of reaching the decision: Agreement

Solution is achieved through iterations - communication (Explaining the process is important).

The essence of ultimate decisions remains impenetrable to the observer - often indeed the decider himself... There will always be the dark and tangled stretches in the decision making process - mysterious even to those who may be most intimately involved.

(from *Kennedy*, by Sorenson Theodore, New York, Bantam 1966.)

Appendix

Consistency of Bus Boarding and Alighting Data

Problem Example

Total Ons = 85

Total Offs = 70

Proposed Method: Fuzzy Optimization Approach

Consider the observed values "approximate" and assume range.

Find solution as close to the center value as possible $\mu_{ai}(x)$, $\mu_{bi}(x)$)

Find $A_2, A_3, A_4, B_1, B_2, B_3$ such that: $B_1 + B_2 + B_3 = A_2 + A_3 + A_4$

كمور

$$B_1 \ge A_2$$
$$B_1 + B_2 \ge A_2 + A_3$$

Example 1 (5 Stations)

DATA				
Station	Observed	Observed		
Number	Boarding	Alighting		
1	15	0		
2	35	10		
3	25	10		
4	10	25		
5	0	25		
Sum	85	60		

RESULTS				
Adjusted	Adjusted	Pass. load		
Boarding	Alighting	betwn. Sta		
13	0	***		
33	12	13		
23	12	34		
8	25	45		
0	28	28		
Sum	77	77		

Membershin Functions

AV - Alighting Volume BV - Boarding Volume OV- Observed Volume