Adjustment and Reconciliation of Data or Design Values: Application of Fuzzy Optimization Concept

Shinya Kikuchi, Ph.D., PE, Professor
Department of Civil and Environmental Engineering
University of Delaware
Newark, Delaware 19716 USA
Kikuchi@ce.udel.edu

August 2004

Nature of the Problem

> Inconsistency problem:
Given: Available data does not support the underlying principle or required relationships.

Objective: Adjust or reconcile the values so that the values are consistent with the principles and other relationships.

Inconsistency Problem Examples: Measured Outflow and Inflow Volumes

Nature of the Problem in General

Requirements for the values

$$
\begin{aligned}
& \mathrm{f}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \ldots\right)=\mathrm{Z}_{1} \\
& \mathrm{f}_{2}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \ldots\right) \approx \mathrm{Z}_{2} \\
& \mathrm{f}_{3}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \ldots\right) \geqslant \approx \mathrm{Z}_{3}
\end{aligned}
$$

Obtained data ($\left.\mathrm{x}_{1}, \mathrm{x}_{2}{ }^{\prime}, \mathrm{x}_{3}{ }^{\prime} ..\right)$

$$
\begin{aligned}
& \mathrm{f}_{1}\left(\mathrm{x}_{1}^{\prime}, \mathrm{x}_{2}^{\prime}, \mathrm{x}_{3}^{\prime} \ldots\right) \neq \mathrm{Z}_{1} \\
& \mathrm{f}_{2}\left(\mathrm{x}_{1}^{\prime}, \mathrm{x}_{2}^{\prime}, \mathrm{x}_{3}^{\prime}, \ldots\right)(\operatorname{Not} \approx) \mathrm{Z}_{2} \\
& \mathrm{f}_{3}\left(\mathrm{x}_{1}^{\prime}, \mathrm{x}_{2}^{\prime}, \mathrm{x}_{3}^{\prime} \ldots\right)\left(\operatorname{Not}>\approx \mathrm{Z}_{3}\right.
\end{aligned}
$$

Adjustment problem

Objective: Find $x_{1}, x_{2}, x_{3}, \ldots$

Requirements for the Model

- Respects the initial values as much as possible.
- Incorporates the analyst's knowledge (hunch, accuracy and reliability of data collection, nature of relationships).
- Has the logical basis (explainable).
- Handles a large complicated situation (consistency).

Basic Concept of Model Formulation

APPROACH

Data Adjustment

$\mathrm{A}+\mathrm{B}=\mathbf{C}$

C'

Max h
$\mathrm{h}_{\mathrm{A}^{\prime}}(\mathrm{x}) \geq \mathrm{h}, \mathrm{h}_{\mathrm{B}},(\mathrm{y}) \geq \mathrm{h}, \mathrm{h}_{\mathrm{C}^{\prime}}(\mathrm{z}) \geq \mathrm{h}$
$\mathrm{x}+\mathrm{y}=\mathrm{z}$
$\mathrm{h}_{\mathrm{A}^{\prime}}(\mathrm{x}) \geq \mathrm{h} \Rightarrow \quad \mathrm{f}_{\mathrm{A}^{\prime}}{ }^{+}(\mathrm{x}) \geq \mathrm{h}$

Model Formulation

Question: Select X, Y, Z

$$
\mathbf{X}+\mathbf{Y}+\mathrm{Z}=\mathbf{D}
$$

Max. h
Subject to:
$h_{A}{ }^{+}(\mathbf{x})>h \Rightarrow a_{1} \mathbf{x}+b_{1}>h$
$h_{A}^{-}(\mathbf{x})>h \Rightarrow a_{2} x+b_{2}>h$
$h_{B}{ }^{+}(\mathbf{y})>h \Rightarrow a_{3} y+b_{3}>h$
$h_{B}{ }^{-}(\mathbf{y})>h \Rightarrow a_{4} y+b_{4}>h$
$h_{C}{ }^{+}(z)>h \Rightarrow a_{5} Z+b_{5}>h$
$h_{C}{ }^{+}(z)>h \Rightarrow a_{5} z+b_{6}>h$
$x+y+z=D$
$\mathrm{x}, \mathrm{y}, \mathrm{z} \geq \mathbf{0}$

Example 1

Example 2: Fitting to a Pre-determined Line

$\mathrm{x}^{\prime} \mathrm{y}^{\prime}$		x	y
5	27	3.5	25.5
		($\mathrm{h}=0.5$)	(h=0.5)
10	48	10.5	46.5
		($\mathrm{h}=0.8$)	(h=0.5)
20	73	18.8	
		(h=0.6)	

Overall $h=0.5$

Example 3

I: $\quad x 2$ must be to the right of $x 1$.
II: $\quad \mathrm{x} 1$ should be much greater than 0 .
III: \quad x2 should be much less than 100.
IV: $\quad \mathrm{x} 1$ and x 2 should be as far away as possible.
V: $\quad x 1$ should be near 20.
VI: $\quad x 2$ should be near 70.

Example 4

I: $\quad x_{2}$ must be to the right of $\mathbf{x} 1$.
II: $\quad x_{1}$ should be much greater than 0 .
III: $\quad x_{2}$ should be much less than 100 .
IV: $\quad x_{1}$ and x_{2} should be as far away as possible.
$V: \quad 2 x_{1}-x_{2} \approx 10$.

Objective : $\max h$

Example 4
Constraints:
I $\quad \mathrm{X}_{1}<\mathrm{X}_{2} \quad \mathrm{X}_{1}-\mathrm{X}_{2}>0$

I $0 \ll X_{1}$
$h_{\text {II }}\left(\mathbf{X}_{1}\right) \geq \mathbf{h}$

III $\quad \mathrm{X}_{2} \ll 100$
$h_{\text {III }}\left(\mathbf{X}_{2}\right) \geq h$

$h_{\text {II }}=\mathbf{0 . 3 5}$
$h_{\text {III }}=\mathbf{0 . 3 2}$

IV $0 \ll\left(\mathbf{X}_{2}-\mathbf{X}_{1}\right)$
$h_{\text {IV }}\left(X_{2}-X_{1}\right) \geq h$

$h_{\mathrm{iv}}=\mathbf{0 .} \mathbf{3 2}$

V $\quad 2 X_{1}-X_{2} \approx 10$

$h_{v}=\mathbf{0 . 4 3}$

Solution: $2 \mathrm{X}_{1}-\mathrm{X}_{2}=4.3$

Example 5

Requirements

- P_{1} and P_{2} must be far away from each other
- P_{1} and P_{2} must be far away from the walls.
- P_{2} must be to the right of \mathbf{P}_{1}.

Example 5

- P_{1} and P_{2} far away from each other.
- P_{1} and P_{2} far away from the X axis.
- \mathbf{P}_{1} and P_{2} far away from the Y axis.
- Slope of line connecting P_{1} and $P_{2}=0.5$.

Objective : max h
Constraints: $\mathrm{X}_{2}-\mathrm{X}_{1}>0$ and $\mathrm{Y}_{2}-\mathrm{Y}_{1}>0$

I	$0 \ll Y_{1}$	$h_{1}\left(Y_{1}\right) \geq h$
II	$0 \ll X_{1}$	$h_{\text {II }}\left(\mathbf{X}_{1}\right) \geq$ h

$h_{1}=0.25$
$h_{\text {II }}=0.25$
III $\quad \mathrm{X}_{2} \ll 100$
$h_{\text {III }}\left(\mathbf{X}_{2}\right) \geq h$
IV $\quad Y_{2} \ll 100$
$h_{\mathrm{IV}}\left(\mathbf{Y}_{2}\right) \geq \mathrm{h}$

$h_{\text {III }}=0.25$
$h_{\mathrm{iv}}=0.5$
V $0 \ll\left(\mathbf{X}_{2}-\mathrm{X}_{1}\right)$

$h_{v}=0.5$
$h_{\mathrm{VI}}=\mathbf{0 . 2 5}$
VII Slope of the line

$$
\left(Y_{2}-Y_{1}\right)=0.5\left(\mathrm{X}_{2}-\mathrm{X}_{1}\right)
$$

Solution points are $(\mathbf{2 5}, 25),(75,50)$ and $h^{*}=0.25$

Rules:

Stay Far away from the walls.
Stay Far away from each other.

$\mathrm{b}=15$

Solution is
Conditions:

$$
Y=3.06 X+14.5
$$

$$
\begin{aligned}
& \mathrm{h}_{1}=\left(\mathrm{b}-\mathrm{Z}_{1}\right) / \mathrm{b} \geq \mathrm{h} \\
& \mathrm{~h}_{2}=\left(\mathrm{b}-\mathrm{Z}_{2}\right) / \mathrm{b} \geq \mathrm{h} \\
& \mathrm{~h}_{3}=\left(\mathrm{b}-\mathrm{Z}_{3}\right) / \mathrm{b} \geq \mathrm{h}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{h}_{1}=0.811 \\
& \mathrm{~h}_{2}=0.811 \\
& \mathrm{~h}_{3}=0.811
\end{aligned}
$$

		Auto-ownership			
$\begin{aligned} & \text { N } \\ & .0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		0	1	2	3+
	1				
	2				
	3				
	4+				

Fuzzy Decision Theory

Decision under Fuzzy Environment

Decision : Confluence of Goals and Constraints

LP formulation	
	Opt. Solution
Max h	
Subject to:	$\mathrm{x}=8.8$
0.25x-2 ${ }^{\text {ch }}$	$\mathrm{h}=0.2$ (satisfaction)

Framework of Fuzzy Decision Model

Expansion to Fuzzy Dynamic Programming

Applications

Adjustment of data for consistency
Traffic volumes, transit ridership data in a network
Travel forecast data (e.g., trip generation, travel time).
Reconstruction of data based on memory
Trip diary consistency.
Selection of design values
Space allocation, budget allocation by communication.
Parameter specification.
Scheduling activities under multiple constraints
Transit schedule coordination (timed transfer problem).

Decisions in Transportation Problem

Objectives and Constraints:Vague and elastic
Objectives (desires) and constraints are many and not welldefined.

Each constraint and goal represents the interest of different constituent.
The edge of the constraint and goal is usually fuzzy; a notion of "tolerance" exist.

Solution: usually a compromise

Different parties' satisfaction levels need to be considered.
The process of reaching the decision: Agreement
Solution is achieved through iterations - communication (Explaining the process is important).

The essence of ultimate decisions remains impenetrable to the observer - often indeed the decider himself... There will always be the dark and tangled stretches in the decision making process - mysterious even to those who may be most intimately involved.
(from Kennedy, by Sorenson Theodore, New York, Bantam 1966.)

Appendix

Consistency of

Bus Boarding and Alighting Data

Problem Examnle

Total Ons $=85$
Total Offs $=70$

Proposed Method: Fuzzy Ontimization Annroach

■ Consider the observed values "approximate" and assume range.

- Find solution as close to the center value as possible $\mu_{a i}(\mathrm{x}), \mu_{b i}(\mathrm{x})$)

Boarding

Find $\mathrm{A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}, \mathrm{~B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}$ such that:

$$
\begin{aligned}
& B_{1}+B_{2}+B_{3}=A_{2}+A_{3}+A_{4} \\
& B_{1} \geq A_{2}
\end{aligned}
$$

$$
B_{1}+B_{2} \geq A_{2}+A_{3}
$$

Fxaminle 1 (5 Stations)

Membershin Funetions

