Uncertainty in Transportation Analysis and Its Treatment

Shinya Kikuchi, Ph.D., P.E.
Professor
University of Delaware
Newark, DE 19716 USA

August 2004

Nature of Transportation Problems and Solutions

The transportation phenomena are the manifestation of the outcome of the complex social economic and political interactions over time and space.

Causality is complex and mostly unknown.

Goals of improving transportation infrastructure not clearly defined.

Outcome of an action is not predictable.

The solution is not optimum rather it is better than other solutions.

Decisions can be influenced by politics; hence, reasoning and logic is important.

What are the implications of complexity?

- Many Players (users, operators, non-users, etc.) must be considered.
- Multi-objective and conflicting objectives.
- Uncertainty.
- data
- knowledge base
- objectives, constraints
- Analysis process handles large amount of information.
- Massive computing and simulation effort involved.
- Outcomes changes in time and space constantly changing initial conditions.
- Difficult to control outcome.

System Modeling and Analysis

Nature of Analysis Elements

Complex problem
Multi-objective
Multi-constraint
.Data (Input information)
Noise
I ncomplete
Qualitative
Knowledge base I ncomplete
Applicable to local area
Qualitative
Pattern (not well defined)

Output
Required accuracy not known, at best approximate
$\begin{aligned} \text { Target (objectives) } & \text { Not dear } \\ & \text { Multi-dimensional } \\ & \text { Priorities among the objectives not dear }\end{aligned}$

Uncertainty

We do not know exactly What will happen? (preticition) What is the problem? ${ }_{\text {abduction })}$ What should be done? (control) What is responsible? (diagnosis)

Issues I mportant to Civil Systems Anal ysis with regard to uncertainty

How to present anal yst's uncertainty honestly
How to separate what we know and what we do not know

How to represent the process of propagation of uncertainty
Mathematical treatment of uncertain quantities and human perception

How to show the effects of added information, value of information

How to deal with multi-objective and multi-constraint subjective problems

WHY DO WE NEED TO STUDY UNCERTAINTY?

To make an honest presentation on proposition and reasons (to understand how much is known and how much unknown)

To preserve uncertainty in the analysis process
To measure information and its value

Information is measured by the reduction of uncertainty. State change from A to B, then $I(A, B)=U(A)-U(B)$

What is Uncertainty???????:
Questions (What? Who? Why? Whom? How? Where? Whose?)
State of information deficiency
INDEFINITE, INDETERMINATE
NOT CERTAIN TO OCCUR, PROBLEMATICAL
NOT RELIABLE, UNTRUSTWORTHY
NOT KNOWN BEYOND DOUBT, DUBIOUS
NOT HAVING CERTAIN KNOWLEDGE, DOUBTFUL

NOT CLEARLY IDENTIFIED OR DEFINED
NOT CONSTANT VARIABLE, FITFUL
(Ref. Webster's New Col legiate Dictionary)

Traditional Treatment of Uncertainty

Use of probability theory

Use of a range (optimistic and pessimistic scenarios)

Sensitivity analysis

Traditional Approach for Handling Uncertainty

About the Truth of " X is A "

Probability theory framework
Information about " X " must be available in statistical evidence
"A" must be defined exactly.
Causal relationship should be random.

Scenario and Sensitivity analysis considers the variation of input

About vagueness of language
Eliminate vagueness
Making assumptions

Two Types of Uncertainty

When A is not well defined.
Fuzziness

Traffic volume is large.

When information about x is not clear.
Ambiguity

The volume is between $1000 \mathrm{veh} / \mathrm{hr}$.

Uncertainty as to

Meaning of words

vagueness

Truth of the proposition (X is A) ambiguity

Modeling of Language-based Expressions for

Inference and Control

Fuzzy Set Theory

Captures linguistic expressions and measurements
Approximate values and measurements
Estimates, e.g. highway capacity
Desires, goals, targets,
Natural language expressions and vague expressions
Distance, Time, Size, e.g. "long", "late", " small"
Feeling, e.g. "good", "acceptable"

Facilitates mathematical framework to preserve the information quality throughout the analysis processes of

Arithmetic operations for prediction, Diagnosis
Inferences, Optimization, Control

Examples of Fuzziness

Notion of Desire and Target

Desired departure time and desired arrival time
Desired cost
Objective, goal, target
Desired compensation
Design values

Notion of Satisfaction and Acceptability: unclear demarcation point
Satisfactory level of achievement, e.g., acceptable air pollution level
Acceptable cost, acceptable delay and travel time, acceptable error Willingness to pay

Perception and quantities based on memory

Time spent for an activity, e.g., travel time between two point.
Distance traveled
Appearance and condition on the past
Description of condition, performance, or quality - linguistic expression Many attributes are involved
Traffic congestion - "bad" traffic and "good" traffic condition Comfort level, Safety level, Level of service
High speed - fast or slow, large or small

Imprecise Values - hard to measure or hard to summarize
Sight distance, Reaction time
Value of time, Capacity of roadway

Memory - answers to the revealed preference surveys.
When one is asked about the distance to a particular location, on the street. One answers it is 200 m .200 m is not a random value. Because the distance is a single value and no probability distribution. But 200 m is an approximate value.

Similarity

Match between two similar objects
(Yet it is interesting to see that probability that one is A can be looked at similarity between x and A) But when term similarity is used most people think it is fuzzy.

Cushion value or Safety factor

A padded value to consider or absorb fluctuation. Interpretation of PHF.

Ranking

Many things cannot be assigned an absolute value. The values are relative. For example, tasting food. This is better than this. Ordering relationship.

Simple Example of Fuzzy Control (1)

Rule:
If $L E F T$, Then move to the RIGHT If RIGHT, Then move to the $L E F T$

Simple Example of Fuzzy Control (2)

Rule:
If $L E F T$, Then move to the RIGHT
If RIGHT Then move to the LEFT
If $L O W$ Then move to HIGH If HIGH Then move to $L O W$

Results for Move Away From Closest Object: 4 Dancers Start in Corner of 300 x 300 Dance Floor

Initial Positions

Final Positions

Results for Move Away from All: 4 Dancers start along the outside of a 300×300 Dance Floor

Initial Positions
Final Positions

Results for Move Away from All: 4 Dancers start in the center of a 300×300 Dance Floor

Initial Positions
Final Positions

Results for Move Away from All: 4 Dancers start at Random Positions of a 300×300 Dance Floor

Initial Positions
Final Positions

Results for Move Away from Closest Object: 4 Dancers start at Random Positions of a 300×300 Dance Floor

Initial Positions

Final Positions

Ambiguity

Determination of Truth

Case of Ambiguity: Truth of " x is A " is not certain

Truth is determined by the availability of evidence

Probability Distribution (Distribution of evidence)

$$
\Sigma \operatorname{Prob}\left(\mathrm{A}_{\mathrm{i}}\right)=1
$$

Weight of evidence

Examples of Possibility Distribution

Quantities related to desire, target, and satisfaction

Desired arrival time "before 5pm"

Approximate quantity
(interpretation of capacity, estimated cost, estimated demand)

Possibility and Necessity Measures

Possibility Measure

$\operatorname{Poss}(\mathbf{A} \cup \mathbf{B})=\operatorname{Max}\{\operatorname{Poss}(A), \operatorname{Poss}(B)\} \quad \operatorname{Poss}(\mathrm{A} \cap \mathrm{B}) \leq \operatorname{Min}\{\operatorname{Poss}(\mathrm{A}), \operatorname{Poss}(\mathrm{B})\}$
Necessity Measure
$\operatorname{Nec}(\mathbf{A} \cap \mathbf{B})=\operatorname{Min}\{\operatorname{Nec}(\mathbf{A}), \operatorname{Nec}(\mathbf{B})\} \quad \operatorname{Nec}(\mathrm{A} \cup B) \geq \operatorname{Max}\{\operatorname{Nec}(\mathrm{A}), \operatorname{Nec}(\mathrm{B})\}$

Poss (A) and Nec (A) : the measures of evidence toward A
Poss $(A)=$ Any non - negative evidence counts to assert A
Nec (A) = Only positive evidence counts to assert A
$\operatorname{Poss}(A)=1-\operatorname{Nec}(\operatorname{Not} A), \quad \operatorname{Nec}(A)=1-\operatorname{Poss}(\operatorname{Not} A)$
$\operatorname{Poss}(A)=$ Anything other than Necessity of (Not A)
$\operatorname{Nec}(\mathrm{A})=\underline{\mathrm{Impossibility} \text { of }(\operatorname{Not} \mathrm{A})}$

Possibility vs. Probability Measures

Truth of " x is less than A." It is measured by the (weight of) evidence.

Probability: Weights given to distinct alternatives.
Possibility: Weights are given in a nested sets

Prob (A)= Shaded area

Possibility and Necessity measures depending on how to weigh evidence

$\operatorname{Poss}(\mathbf{A})=\alpha, \operatorname{Nec}(\mathbf{A})=\mathbf{0}$

$\operatorname{Poss}(A)=1, \operatorname{Nec}(A)=1-\beta$

Example of Ambiguity

Given the context or reference (evidence) in approximate value,

Determine the truth of a proposition.
Comparison of two numbers.

Frameworks for Measuring Truth

Information about \mathbf{x}

1			
		Crisp set	Fuzzy set
	Probabilistic	Probability theory Probability	Probability theory Probability
	Possibilistic	Possibility theory Possibility measure Necessity measure	Possibility theory Possibility measure Necessity measure
	Combined	DempsterShafer theory Belief measure Plausibility measure	Dempster- Shafer theory Belief measure Plausibility measure

Measure Theory

Additive Measure $\mathbf{g}(\mathbf{A}+\mathrm{B})=\mathbf{g}(\mathbf{A})+\mathbf{g}(\mathrm{B})$

Non-Additive Measure $\mathbf{g}(\mathbf{A}+\mathbf{B})<$ or $>\{\mathbf{g}(\mathbf{A})+\mathbf{g}(\mathbf{B})\}$

Axioms of Measure
Boundary Condition
Monotonicity Condition Continuity Condition

$$
\begin{array}{ll}
\mathbf{g}(\varnothing)=\mathbf{0} & \mathbf{g}(\mathbf{X})=\mathbf{1} \\
\mathbf{A} \subseteq \mathbf{B}, & \mathbf{g}(\mathbf{A}) \leq \mathbf{g}(\mathbf{B})
\end{array}
$$

$\mathbf{g}(\mathbf{A} \cup \mathbf{B}) \geq \operatorname{Max}\{\mathbf{g}(\mathbf{A}), \mathbf{g}(\mathbf{B})\}$

$\mathbf{g}(\mathbf{A} \cap \mathbf{B}) \leq \operatorname{Min}\{\mathbf{g}(\mathbf{A}), \mathbf{g}(\mathbf{B})\}$

Attitude Difference Under Uncertainty

Under Uncertainty, one's attitude dictates the decision. Optimistic Attitude -- based on "We can do it." " It is possible." Pessimistic attitude-- based on " 'We cannot do it' is impossible."

Optimization Model

> Zone of Optimum Solution

Classical Optimization

$\varepsilon=\operatorname{Max} \operatorname{Min} \mathbf{h}_{G}(\mathbf{x}), \mathbf{h}_{\mathbf{C}}(\mathbf{x})$

The value of the membership function may be considered as the force pushing to accept that value.

Multi-objective multi-constraint problem

Dedision parameters: x, y, z

Performance affected by $x, y, z: a, b, c$

$$
\begin{aligned}
& a=f_{1}(x, y, z) \\
& b=f_{2}(x, y, z) \\
& c=f_{3}(x, y, z)
\end{aligned}
$$

Unknown: $\mathrm{x}, \mathrm{y}, \mathrm{z}$
$a=f_{1}(x, y, z)$
$b=f_{2}(x, y, z)$
$c=f_{3}(x, y, z)$

Constraints related to $x, y, z: P, Q, R$

$$
\begin{aligned}
& \mathbf{P}=\mathbf{g}_{1}(\mathbf{x}, \mathbf{y}, \mathbf{z})<\alpha_{1} \\
& \mathbf{Q}=\mathbf{g}_{2}(\mathbf{x}, \mathbf{y}, \mathbf{z})<\alpha_{2} \\
& \mathbf{R}=\mathbf{g}_{3}(\mathbf{x}, \mathbf{y}, \mathbf{z})<\alpha_{3}
\end{aligned}
$$

$\left.\begin{array}{l}\mathrm{P}=\mathrm{g}_{1}(\mathrm{x}, \mathrm{y}, \mathrm{z})<\alpha 1 \\ \mathrm{Q}=\mathrm{g}_{2}(\mathrm{x}, \mathrm{y}, \mathrm{z})<\alpha 2 \\ \mathrm{R}=\mathrm{g}_{3}(\mathrm{x}, \mathrm{y}, \mathrm{z})<\alpha 3\end{array}\right\} \quad$ Constraints

Obejctives: satisfaction of the decision maker

$$
\begin{array}{ll}
h_{A}\left[f_{1}(x, y, z)\right] & h_{P}\left[g_{1}(x, y, z)\right] \\
h_{B}\left[f_{2}(x, y, z)\right] & h_{Q}\left[g_{2}(x, y, z)\right] \\
h_{C}\left[f_{3}(x, y, z)\right] & h_{R}\left[g_{3}(x, y, z)\right]
\end{array}
$$

```
Max min \{
\(h_{A}\left[f_{1}(x, y, z)\right]\)
\(h_{B}\left[f_{2}(x, y, z)\right]\)
\(h_{c}\left[f_{3}(x, y, z)\right]\)
```

$h_{p}\left[g_{1}(x, y, z)\right]$
$h_{Q}\left[g_{2}(x, y, z)\right]$
$\left.h_{R}\left[g_{3}(x, y, z)\right]\right\}$

Optimization Problem
Max h

$$
\begin{aligned}
& h_{A}\left[f_{1}(x, y, z)\right]>h \\
& h_{B}\left[f_{2}(x, y, z)\right]>h \\
& h_{C}\left[f_{3}(x, y, z)\right]>h
\end{aligned}
$$

$$
\begin{aligned}
& h_{p}\left[g_{1}(x, y, z)\right]>h \\
& h_{Q}\left[g_{2}(x, y, z)\right]>h \\
& h_{R}\left[g_{3}(x, y, z)\right]>h
\end{aligned}
$$

Non-linear optimization problem
Optimum val ues of x, y, z that satisfy the goals and constraints

Application Areas (1)

Modeling of human behavior and decision process (choice)

Human control: rule based handling of stimulus - response process
Driver behavior - stimulus-response process
Air traffic control ler's decision process

Choice model ing:
Comparison of alternatives: comparison of approximate numbers
Comparison of performance and target (or desired state)

Application Areas (2)

Large-scale systems problems
Rule based analysis,
Prediction, diagnosis, control
Optimization
Multi-objective and multi-constraint problem
Reasoning process

> System justification logic building (eg. ITS)

Multi-criteria eval uation
Treatment of non-additive weights
Fuzzy measure and fuzzy integral problem

Application Areas(3)

Data handling

Treatment of approximate numbers

Control problems
Traffic signals
Traffic flow control

Summary

Preserve uncertainty as much as possible during the analysis process.
Information should not be added arbitrarily.

Understand where and when to eliminate uncertainty - cut-off point.
Understand the degree of accuracy required and do not pursue accuracy beyond the requirement.

Do not let mathematical framework control the analysis process - be flexible in the use of mathematical approach. Select the mathematical framework faithful to the type of uncertainty.

Profess uncertainty and ignorance honestly

Comment or questions?

Top-Down Approach:Traditional Approach

Objectives): Max or Min $\mathbf{U}\left(X_{i}\right)$

General laws and principles $\longrightarrow \boldsymbol{A}$

\downarrow
Solutions

Bottom-up Approach: Decentralized Approach

Pattern of system behavior

4

