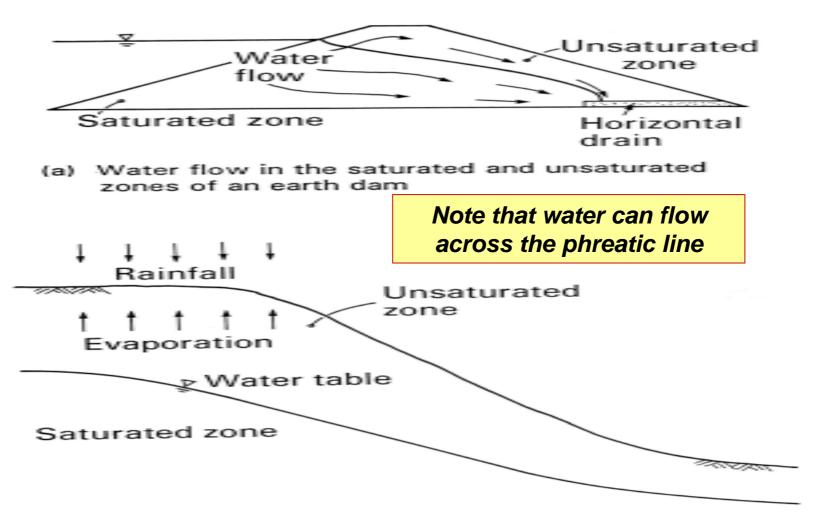
CHAPTER 7 STEADY	STATE FLOW			
------------------	------------	--	--	--

7.1 STE	ADY STATE WATER FLOW			
7.	1.1 Variation of Coefficient of Permeability with Space for an			
	Unsaturated Soil			
	Heterogeneous, isotropic steady state seepage			
	Heterogeneous, anisotropic steady state seepage			
7.	1.2 One-Dimensional Flow			
	Formulation for one-dimensional flow			
One-dimensional	Solution for one-dimensional flow			
water flow	Finite difference method			
water now	Head boundary condition			
	Flux boundary condition			
7.1.3 Two-Dimensional Flow				
	Formulation for two-dimensional flow			
Two-dimensional	Solutions for two-dimensional flow			
water flow	Seepage analysis using the finite element method			
	Examples of two-dimensional problems			
	Infinite slope			
3-D water flow	1.4 Three-Dimensional Flow			
7.2 STEADY STATE AIR FLOW				
7	.2.1 One-Dimensional Flow			
Air flow 7	.2.2 Two-Dimensional Flow			

7.3 STEADY STATE AIR DIFFUSION THROUGH WATER

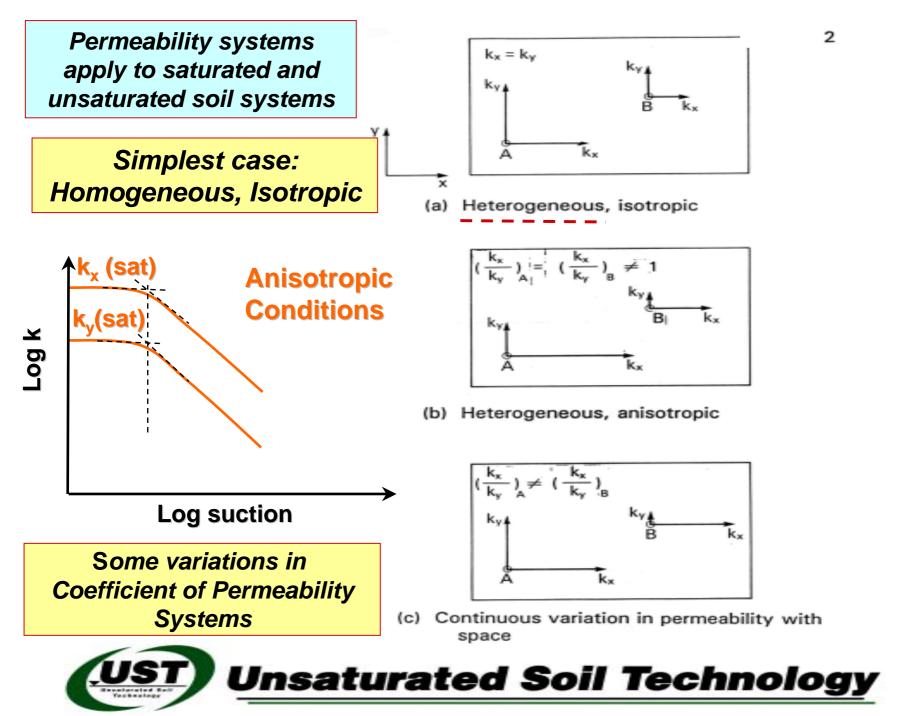
Diffusion

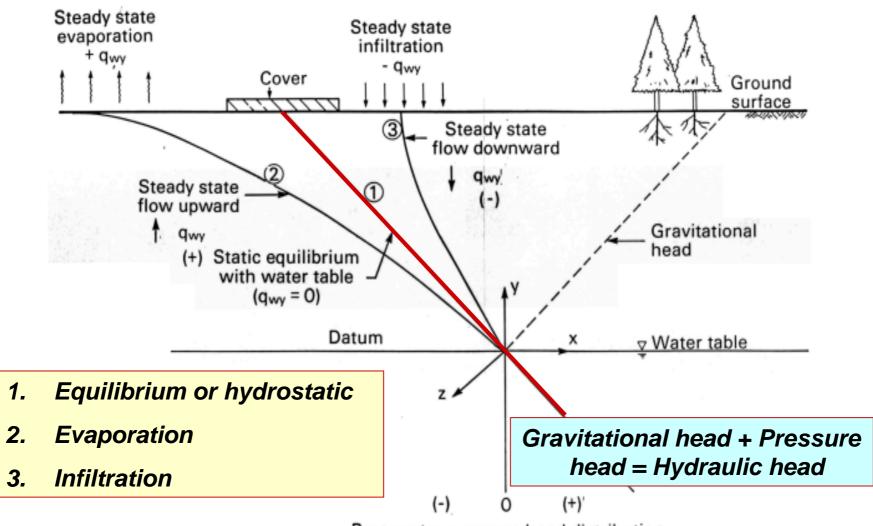
STEADY STATE FLOW



(b) Water flow across the boundary of a slope

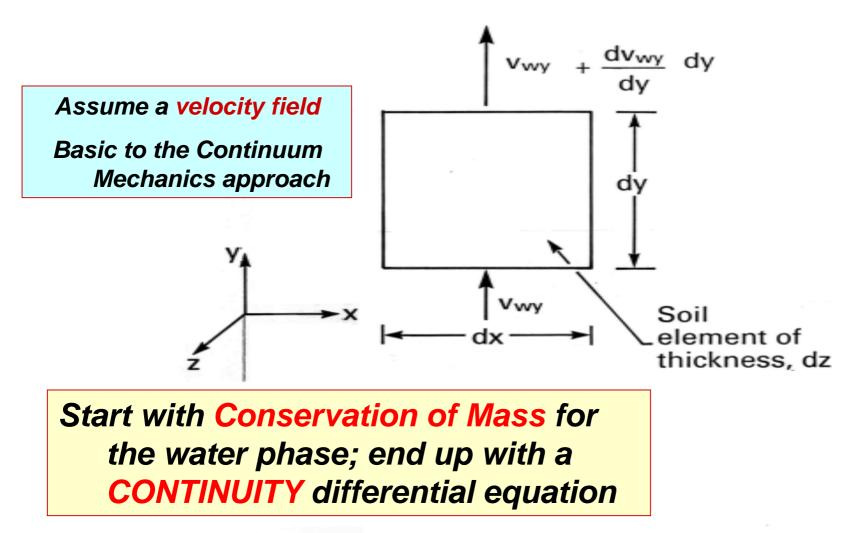
Examples involving flow through unsaturated soils





Pore-water pressure head distribution

Static equilibrium and steady state flow conditions in the zone of negative pore-water pressures



One-dimensional water flow through an unsaturated soil element

STEADY STATE WATER FLOW

Formulation for one-dimensional flow

$$(v_{wy} + \frac{dv_{wy}}{dy} dy) dx dz - v_{wy} dx dz = 0$$

Net water flow through an element

where:

v_{wy} = water flow rate across a unit area of the soil in the y-direction

dx, dy, dz = dimensions in the x-, y- and zdirections, respectively

 $\frac{dv_{wy}}{dy}$ dx dy dz = 0

Add the Darcy constitutive law

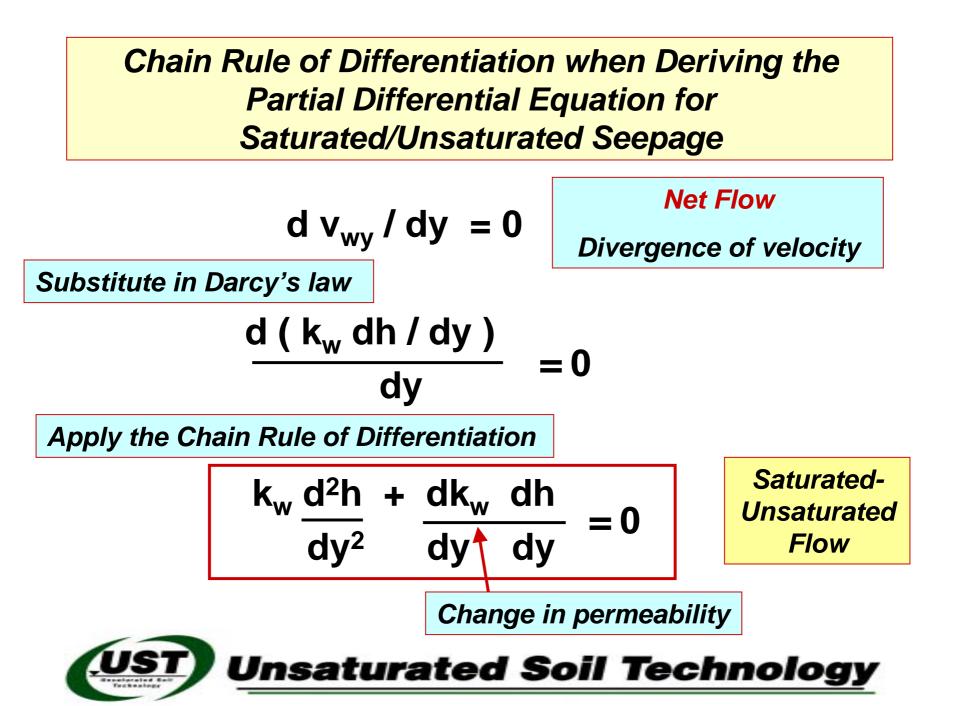
$$\frac{d \left\{-k_{wy}(u_a - u_w) dh_w / dy\right\}}{dy} dx dy dz = 0$$

where: k_{wy}(u_a - u_w) = water coefficient of permeability as a function of matric suction which varies with location in the y-direction

- dh_w / dy = hydraulic head gradient in the y -direction
 - h_w = hydraulic head (i.e., gravitational head plus pore-water pressure head)

New component to water flow

$$k_{wy} \frac{d^2 h_w}{dy^2} + \frac{dk_{wy}}{dy} \frac{dh_w}{dy} = 0$$



Taylor's Series can be used to compute points along a curved function

$$d^2h_w/dy^2=0.0$$

Finite difference method

$$h_{i+1} = h_i + \Delta y \left[\frac{-dh}{-dy}\right]_i + \frac{\Delta y^2}{2!} \left[\frac{-d^2h}{-dy^2}\right]_i + \frac{\Delta y^3}{3!} \left[\frac{-d^3h}{-dy^3}\right]_i + \cdots$$

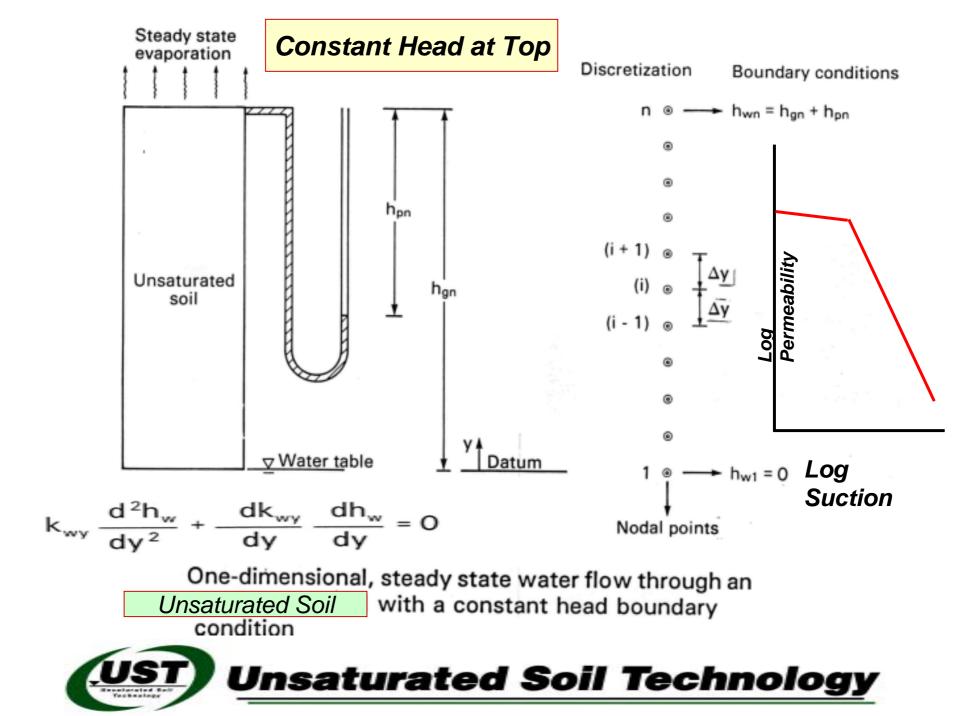
$$h_{i-1} = h_i - \Delta y \left[\frac{dh}{dy}\right]_i + \frac{\Delta y^2}{2!} \left[\frac{d^2h}{dy^2}\right]_i - \frac{\Delta y^3}{3!} \left[\frac{d^3h}{dy^3}\right]_i + \cdots$$

where:

i-1, i, i + 1 = three consecutive points spaced at increments, Δy

$$\left[\frac{dh}{dy}\right] = \frac{h_{i+1} - h_{i-1}}{2\Delta y}$$

$$\left(\frac{d^{2}h}{dy^{2}}\right)_{i} = \frac{h_{i+1} + h_{i-1} - 2h_{i}}{\Delta y^{2}}$$



Head boundary condition

finite difference form for point (i).

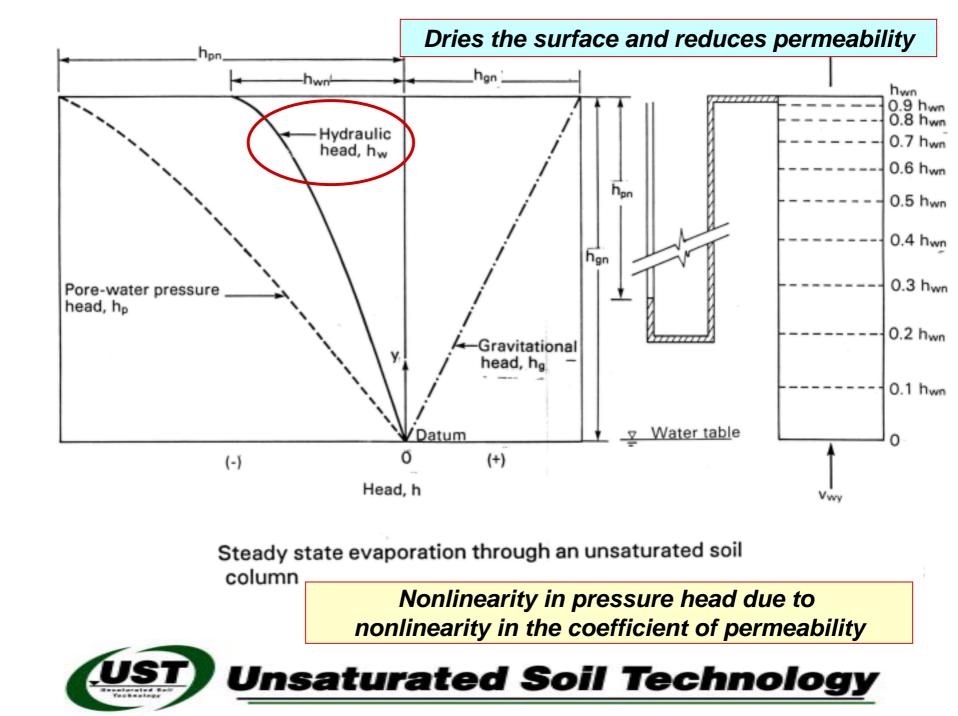
$$\begin{aligned} & k_{wy(i)} \left\{ \begin{array}{c} \frac{h_{w(i+1)} + h_{w(i-1)} - 2h_{w(i)}}{(\Delta y)^2} \end{array} \right\} + \left\{ \begin{array}{c} \frac{k_{wy(i+1)} - k_{wy(i-1)}}{2\Delta y} \end{array} \right\} \\ & k_{wy} \frac{d^2 h_w}{dy^2} + \frac{dk_{wy}}{dy} \frac{dh_w}{dy} = 0 \end{array} \right\} + \left\{ \begin{array}{c} \frac{h_{w(i+1)} - h_{w(i+1)}}{2\Delta y} \end{array} \right\} = 0 \end{aligned}$$

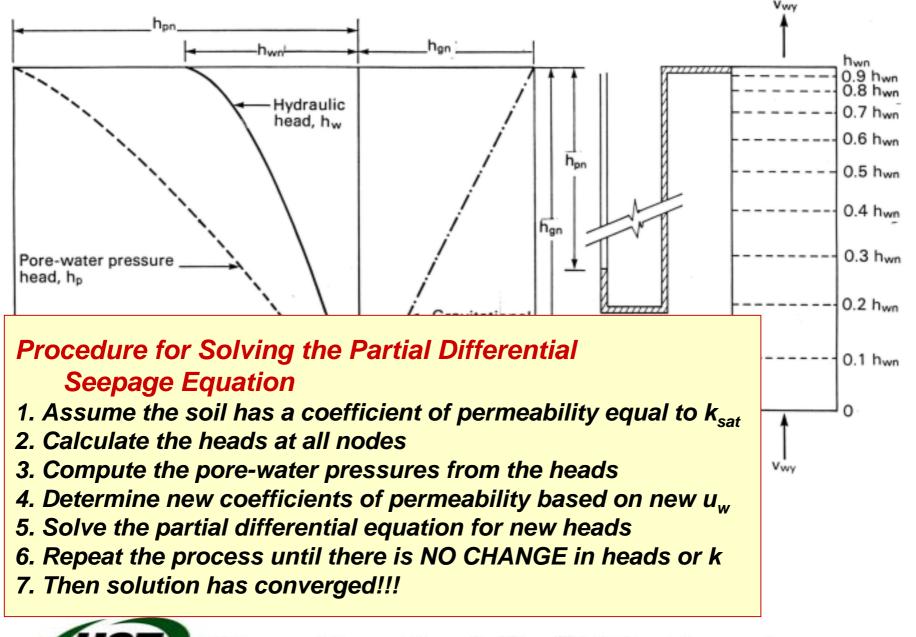
where:

 $k_{wy(i)}, k_{wy(i-1)}, k_{wy(i+1)} =$ water coefficients of permeability in the y-direction at points (i), (i-1) and (i + 1), respectively $h_{w(i)}, h_{w(i-1)}, h_{w(i+1)} =$ hydraulic heads at points (i), (i-1) and (i + 1), respectively

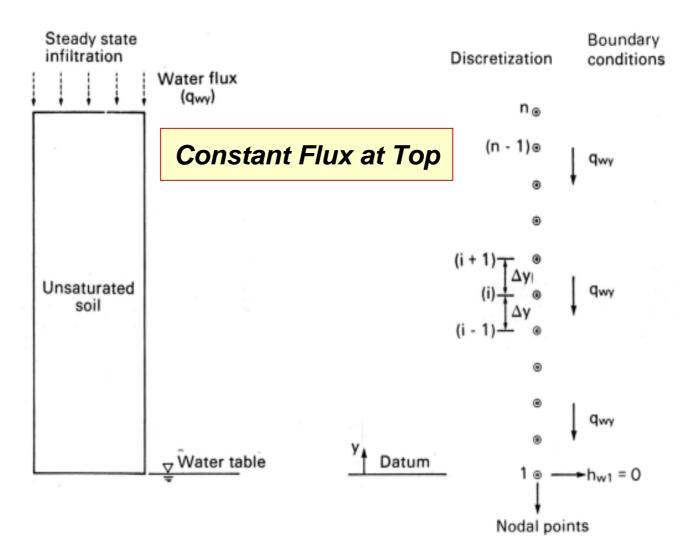
$$\begin{aligned} &- \left\{ 8 \; k_{wy(i)} \right\} h_{w(i)} + \left\{ 4 \; k_{wy(i)} + k_{wy(i+1)} - k_{wy(i-1)} \right\} h_{w(i+1)} \\ &+ \left\{ 4 \; k_{wy(i)} + k_{wy(i-1)} - k_{wy(i+1)} \right\} h_{w(i-1)} = 0 \end{aligned}$$

 $h_{w(1)} = 0.0$ at y equal to 0.0 (base) $h_{w(n)} = h_{gn} + h_{pn}$ at y equal to h_{gn} (top)





UST) Unsatura



One-dimensional steady state water flow through an unsaturated soil with a flux boundary condition

Unsaturated Soil Technology

7 - 9

Finite difference method

Flux boundary condition

Use Darcy's law to relate flux and heads

$$\mathbf{q}_{wy} \equiv -\mathbf{k}_{wy(i)} \frac{\mathbf{h}_{w(i+1)} - \mathbf{h}_{w(i-1)}}{2\Delta \mathbf{y}} \mathbf{A}$$

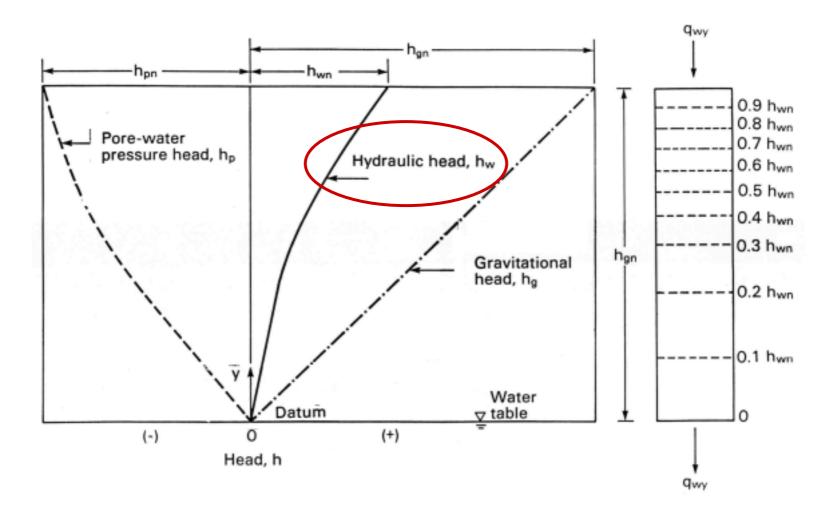
- q_{wy} = water flux through the soil column during the steady state flow. The flux is assumed positive in an upward direction and negative in a downward direction
 - A = cross-sectional area of the soil column

$$h_{w(i+1)} = h_{w(i-1)} - \frac{2\Delta y}{A k_{wy(i)}} q_{wy(i+1)}$$

$$- \{8k_{wy(i)}\}h_{w(i)} + \{4k_{wy(i)} + k_{wy(i+1)} - k_{wy(i-1)}\}\{h_{w(i-1)} - \frac{2\Delta y}{A k_{wy(i)}}q$$

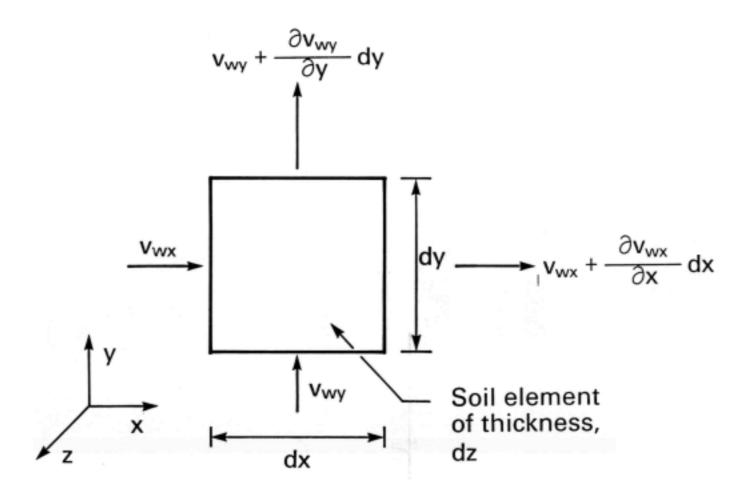
$$\{4k_{wy(i)} + k_{wy(i-1)} - k_{wy(i+1)}\}h_{w(i-1)} = 0$$

$$h_{w(i)} = h_{w(i-1)} - \left\{ \frac{4k_{wy(i)} + k_{wy(i+1)} - k_{wy(i-1)}}{8k_{wy(i)}^2} \right\} \frac{2\Delta y}{A} q_{wy}$$



Steady state infiltration through an unsaturated soil

Nonlinearity in pressure head due to nonlinearity in the coefficient of permeability



Two-dimensional water flow through an unsaturated soil element

$$(v_{wx} + \frac{\partial v_{wx}}{\partial x} dx - v_{wx}) dy dz + (v_{wy} + \frac{\partial v_{wy}}{\partial y} dy - v_{wy}) dx dz = 0$$

where:

v_{wx} = water flow rate across a unit area of the soil in the x-direction

Divergence of velocity

$$\left[\frac{\partial v_{wx}}{\partial x} + \frac{\partial v_{wy}}{\partial y}\right] dx dy dz = 0$$
where: $v_{wx} = k_{wx} dh_w / dx$

$$v_{wy} = k_{wy} dh_w / dy$$

where:

k_{wx}(u_a - u_w) = water coefficients of permeability as a function of matric suction. The permeability can vary with location in the x-direction

 ∂h_w / ∂x = hydraulic head gradient in the x -direction

$$k_{wx} \frac{\partial^2 h_w}{\partial x^2} + k_{wy} \frac{\partial^2 h_w}{\partial y^2} + \frac{\partial k_{wx}}{\partial x} \frac{\partial h_w}{\partial x} + \frac{\partial k_{wy}}{\partial y} \frac{\partial h_w}{\partial y} = 0$$

where:

 Ok_{wx} / Ox = change in water coefficient of permeability in the x-direction

Two-Dimensional Steady State Equations for Unsaturated Soils

Heterogeneous, anisotropic

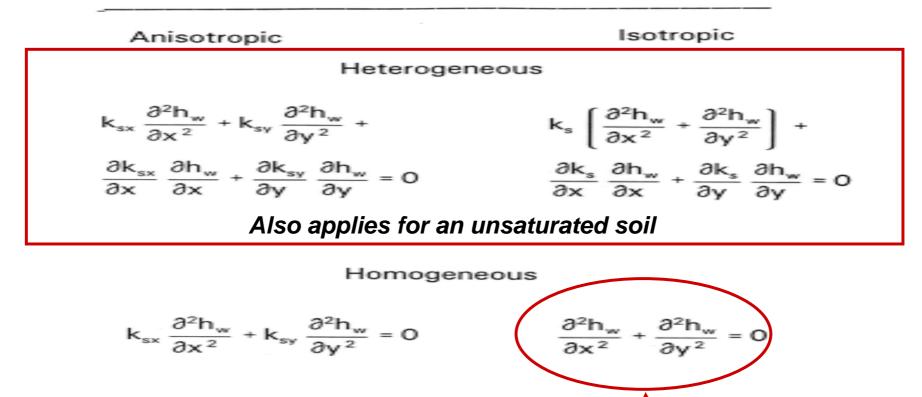
$$k_{wx} \frac{\partial^2 h_w}{\partial x^2} + k_{wy} \frac{\partial^2 h_w}{\partial y^2} + \frac{\partial k_{wx}}{\partial x} \frac{\partial h_w}{\partial x} + \frac{\partial k_{wy}}{\partial y} \frac{\partial h_w}{\partial y} = 0$$

Heterogeneous, isotropic

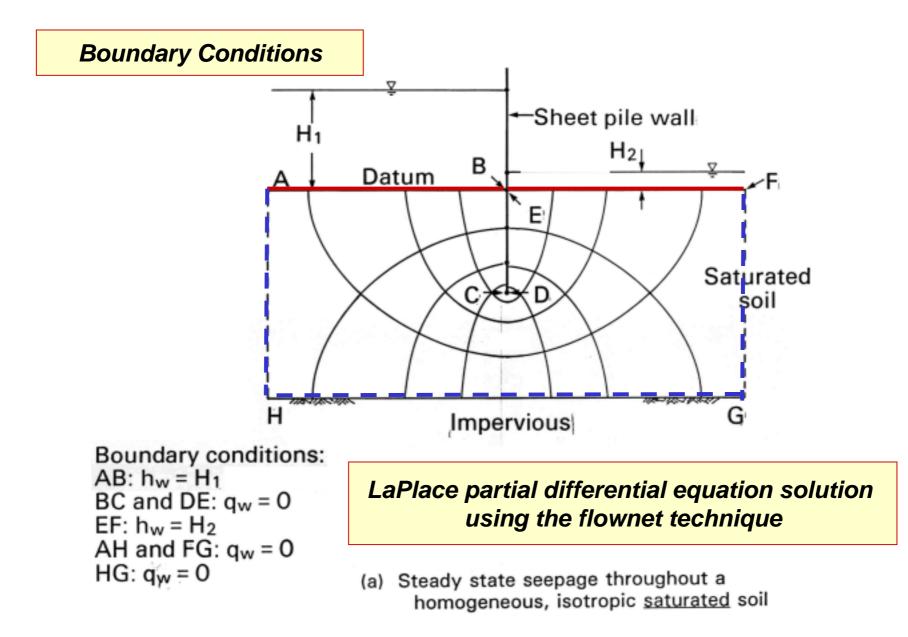
$$k_{w} \left[\frac{\partial^{2} h_{w}}{\partial x^{2}} + \frac{\partial^{2} h_{w}}{\partial y^{2}} \right] + \frac{\partial k_{w}}{\partial x} \frac{\partial h_{w}}{\partial x} + \frac{\partial k_{w}}{\partial y} \frac{\partial h_{w}}{\partial y} = 0$$

An unsaturated soil is a heterogeneous soil since permeability varies with space

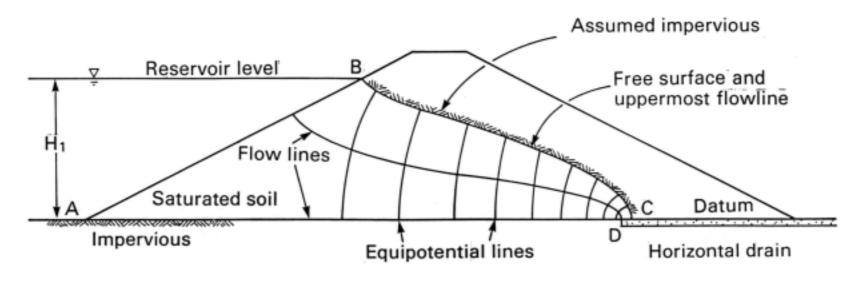
Two-Dimensional Steady State Equations for Saturated Soils



LaPlace partial differential equation that can be solved using the flownet technique



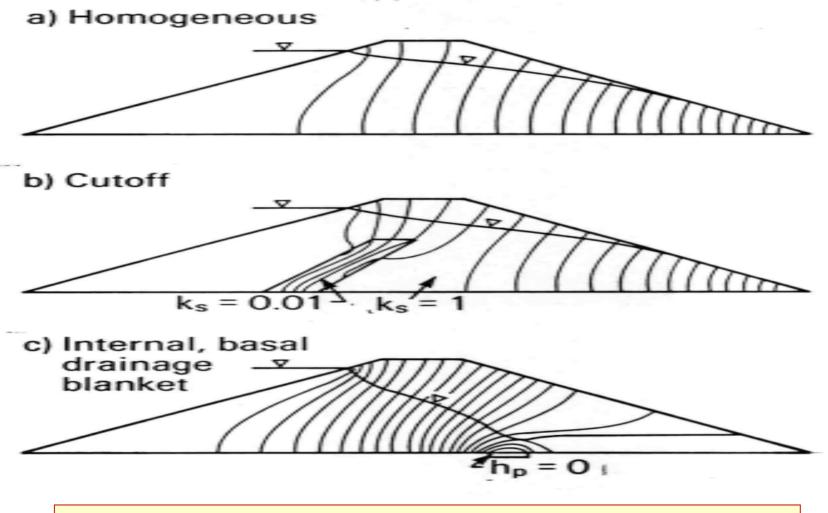
Creation of the Unconfined Category of Seepage Problems



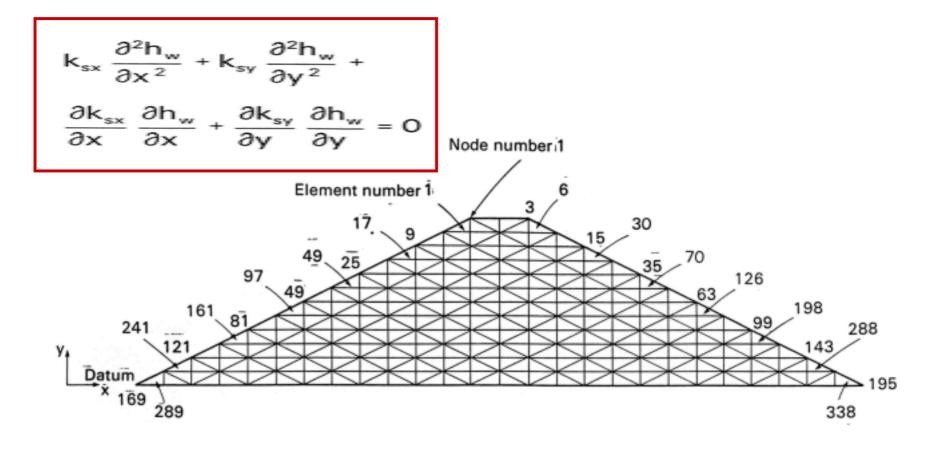
Boundary conditions: AB: $h_w = H_1$ BC: free surface, it's location is unkown CD: $h_w = 0$ DA: $q_w = 0$

(b) Steady state seepage throughout a homogeneous, isotropic earth dam

Problem: An attempt is being made to impose two boundary conditions at the phreatic surface; no flow and zero pressure



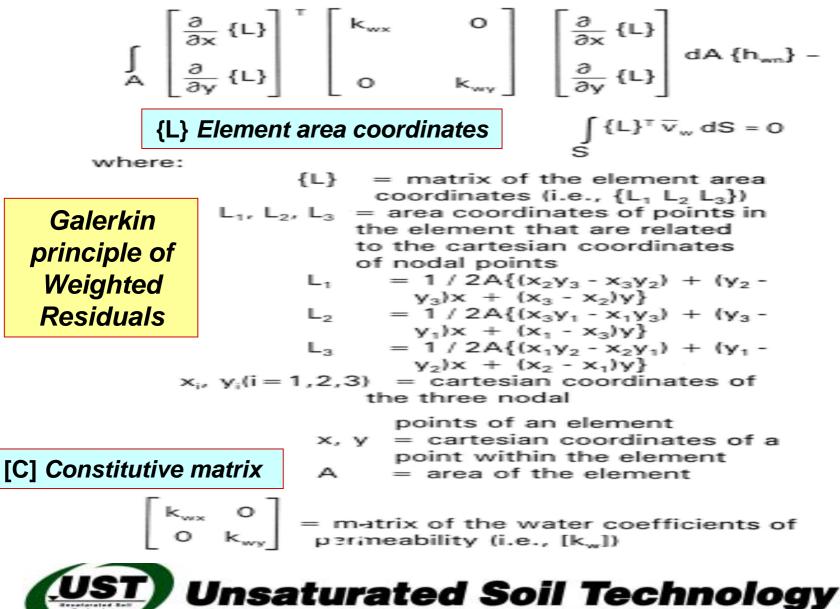
Examples of saturated-unsaturated seepage modeling (Freeze, 1971)



Discretized cross-section of a dam for a finite element analysis

Examples of saturated-unsaturated seepage modeling (Papagianakis and Fredlund, 1984)

Solutions for two-dimensional flow Seepage analysis using the finite element method



$${h_{wn}} = matrix of$$

hydraulic heads at the nodal points $\begin{cases} h_{w1} \\ h_{w2} \\ h_{w3} \end{cases}$ 7-1

- v = external water flow rate in a direction
 perpendicular to the boundary of the element
 - S = perimeter of the element

$$\int_{A} [B]^{T} [k_{w}] [B] dA \{h_{wn}\} - \int_{S} [L]^{T} \overline{v}_{w} dS = 0$$
where:

$$\begin{bmatrix} BI = \text{matrix of the derivatives of the area coordinates which can be written as.}$$

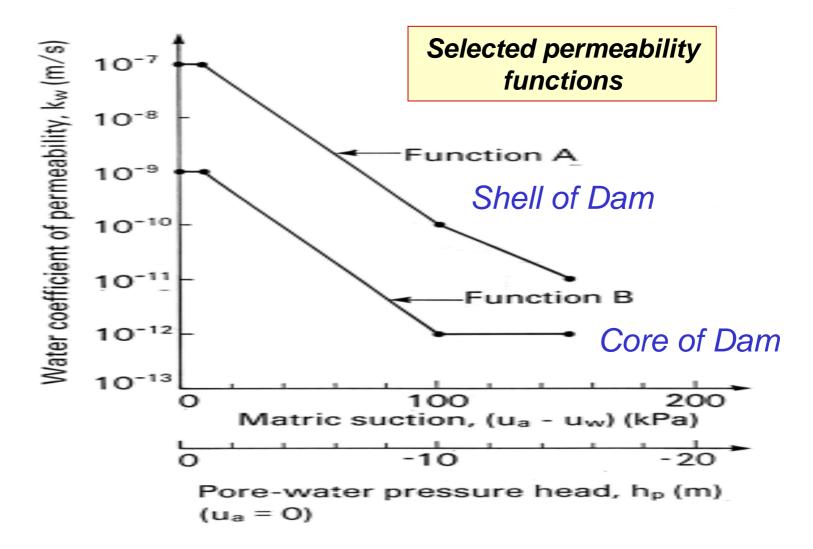
$$\begin{bmatrix} B = \frac{1}{2A} \begin{cases} (y_{2} - y_{3}) & (y_{3} - y_{1}) & (y_{1} - y_{2}) \\ (x_{3} - x_{2}) & (x_{1} - x_{3}) & (x_{2} - x_{1}) \end{cases}$$

 $\left\{ \begin{array}{c} v_{wx} \\ v_{wy} \end{array} \right\} = [k_w] [B] \{h_{wn}\}$

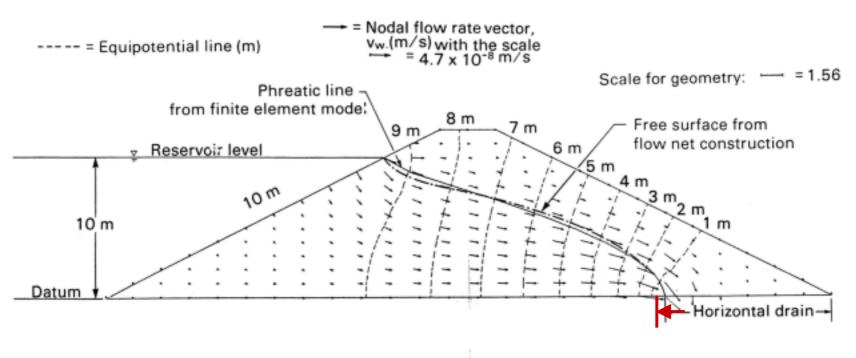
Solve for velocities after heads are calculated

where:

v_{wx}, v_{wy} = water flow rates within an element in the x- and y-directions, respectively

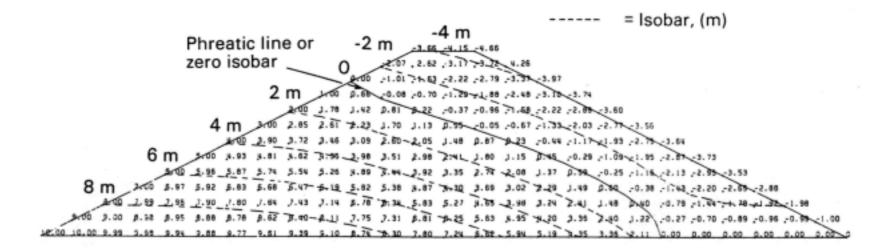


Specified permeability functions for analyzing steady state seepage through a dam



 (a) Equipotential lines and nodal flow rate vectors through the dam

Isotropic earth dam with a horizontal drain

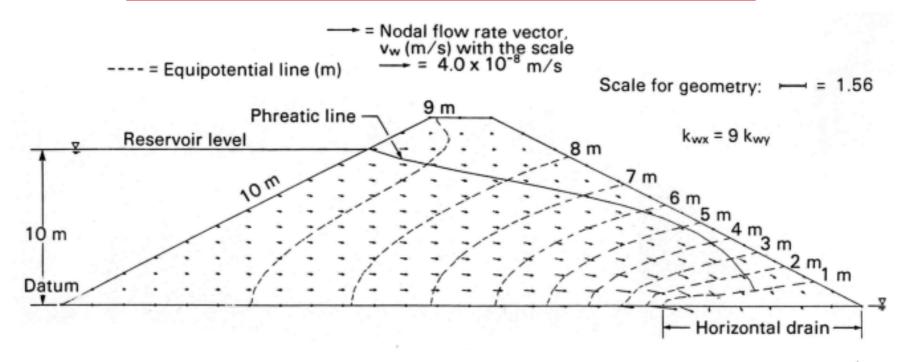


Pressure contours have little physical meaning

(b) Contours of pore-water pressure heads (isobars) through the dam

Isotropic earth dam with a horizontal drain

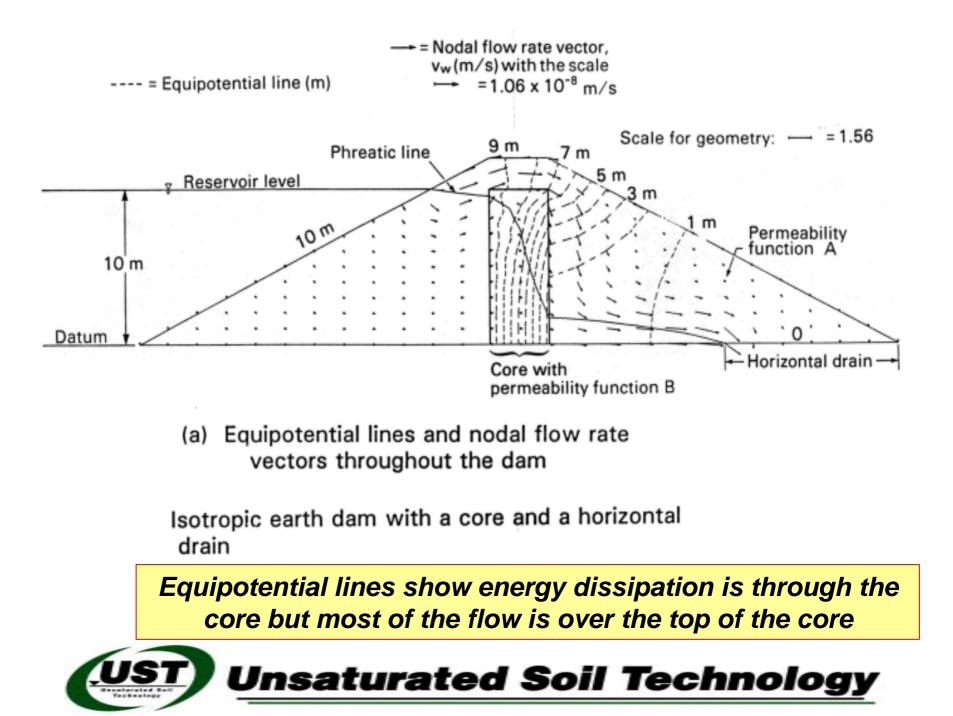
Compacted soil may have $k_h = 9$ to 16 times k_v

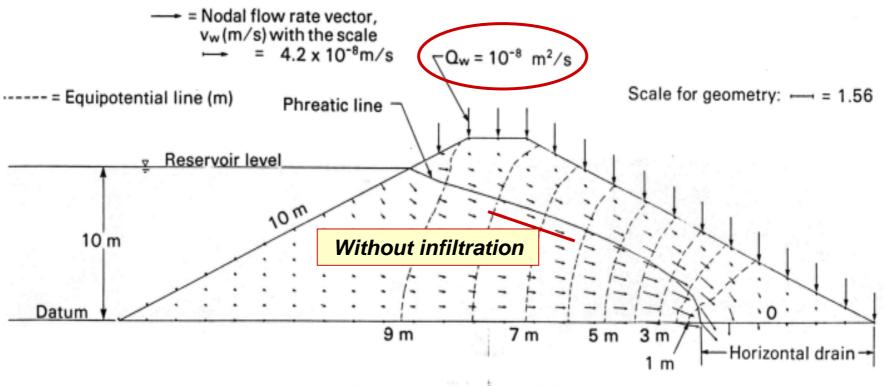


(a) Equipotential lines and nodal flow rate vectors throughout the dam

Anisotropic earth dam with a horizontal drain

Equipotential lines and the zero pressure line (phreatic surface) are of most relevance

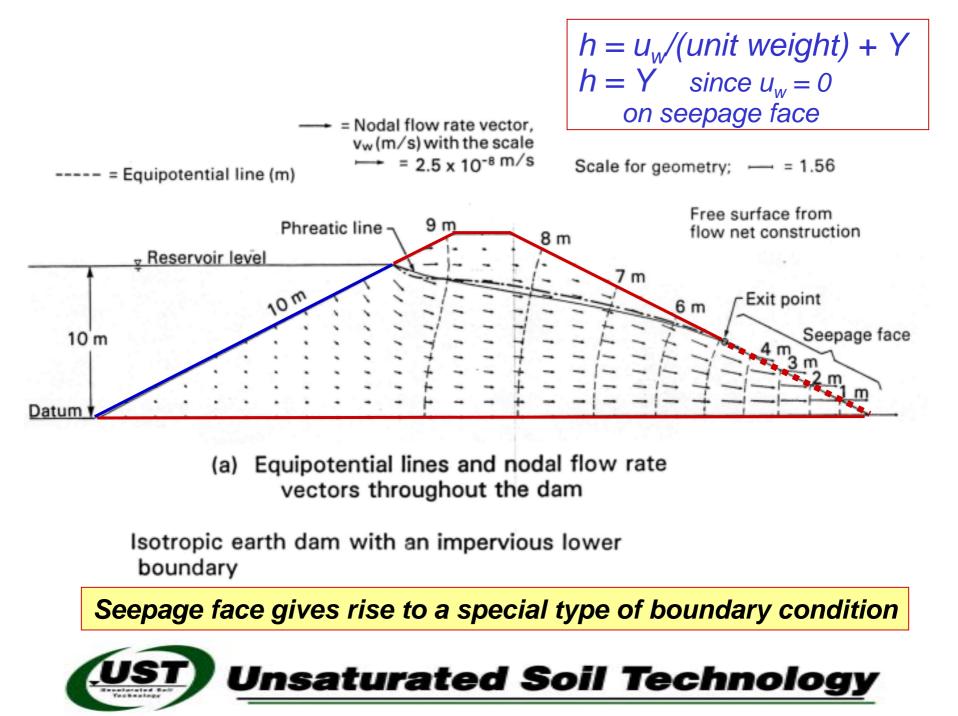


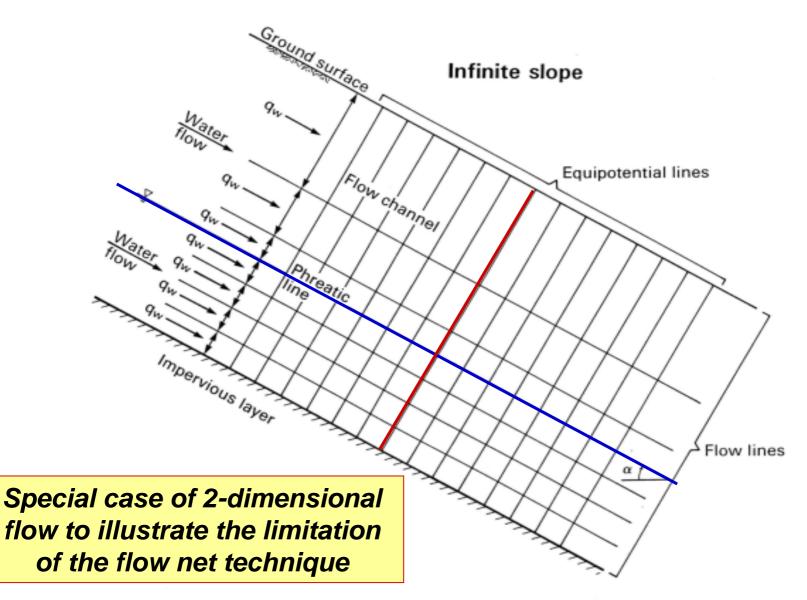


(a) Equipotential lines and nodal flow rate vectors throughout the dam

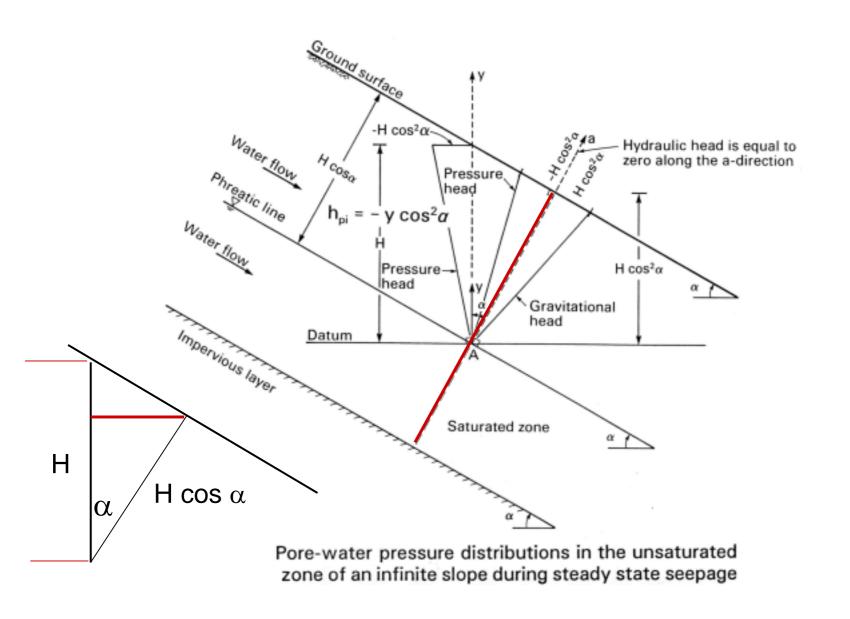
Isotropic earth dam with a horizontal drain under steady state infiltration

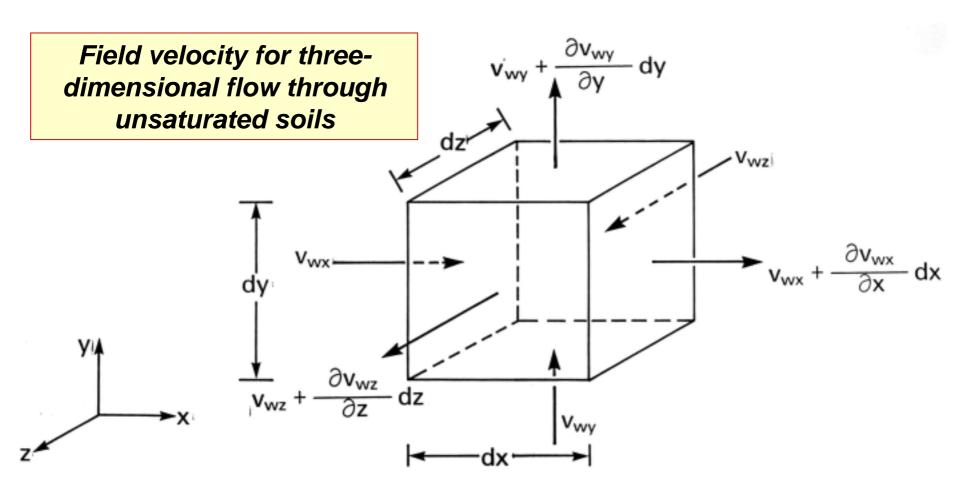
Rainfall causes the phreatic line to rise





Steady state water flow through an infinite slope





Three-dimensional steady state water flow through an unsaturated soil element

Derivation of the partial differential equation for threedimensional flow through unsaturated soils

$$\{v_{wx} + \frac{\partial v_{wx}}{\partial x} dx - v_{wx}\} dy dz + \{v_{wy} + \frac{\partial v_{wy}}{\partial y} dy - v_{wy}\} dx dz +$$

$$\{v_{wz} + \frac{\partial v_{wz}}{\partial z} dz - v_{wz}\} dx dy = 0$$

where:

v_{wz} = water flow rate across a unit area of the soil in the z- direction

$$\left(\frac{\partial v_{wx}}{\partial x} + \frac{\partial v_{wy}}{\partial y} + \frac{\partial v_{wz}}{\partial z}\right) dx dy dz = 0$$

$$\frac{\partial}{\partial x} \left\{ k_{wx}(u_a - u_w) \frac{\partial h_w}{\partial x} \right\} + \frac{\partial}{\partial y} \left\{ k_{wy}(u_a - u_w) \frac{\partial h_w}{\partial y} \right\} +$$

$$\frac{\partial}{\partial z} \left\{ k_{wz}(u_a - u_w) \frac{\partial h_w}{\partial z} \right\} = 0$$

where: $k_{wz}(u_a - u_m) =$ water coefficient of permeability as a function of matric suction $\partial h_w / \partial z =$ hydraulic head gradient in the z -direction

$$k_{wx} \frac{\partial^2 h_w}{\partial x^2} + k_{wy} \frac{\partial^2 h_w}{\partial y^2} + k_{wz} \frac{\partial^2 h_w}{\partial z^2} + \frac{\partial k_{wx}}{\partial x} \frac{\partial h_w}{\partial x} + \frac{\partial k_{wy}}{\partial y} \frac{\partial h_w}{\partial y} + \frac{\partial h_w}{\partial y} = 0$$

