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Darcy's law (1856)

ahw - flow rate of water
- 5}? - coefficient of permeability
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k,, constant
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Experimental verification of Darcy’s law for water
flow through an unsaturated soil (from Childs and-«

Collis-George, 1950) . .
Childs and Collis-George, 1950
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k=29
o,
wihere
., = absolute [dynamic) viscosity of

water i
= intrinsic permeability of the soal

Agar - water interface
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—> 4 =2z same effect as a void
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Development of an unsaturated soil by the
withdrawal of the air-water interface at different
stages of matric suction or degres of saturation
(i.e., stages 1 to 5) (from Childs, 1969)

Soil particles

k., = k_IS, <} .
or ) - Ej For a saturated soil,
= = W
- aith k = k(e) or k(w
o k., = k_ lw, 5] ( ) ( )
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SWCC - Soil-Water Characteristic Curve
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SWCC - Soil-Water Characteristic Curve
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Determination of the air entry wvalue, {(u, - “-]'E"
residual degree of saturation, S, , and pore size
distribution index, A (from Brooks and Corey,
1262)
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Determination of the air entry wvalue, (u, - u),.
residual degree of saturation, S, ., and pore size
distribution index, A (from Brooks and Corey.,
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The Brooks and Corey (1964) equation for SWCC

Typical matric suction versus degree of saturation
curves for various soils with their corresponding A
values (from Brooks and Corey, 1964)
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K. =k for (u, —wu_b = (u

L =

k., =k, S_* for fu, —u ) > (u, —wu b,
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The Brooks and Corey (1964) equation for Permeability

Relative permeability of water and air as a function
of the degree of saturation during drainage (from

Brooks and Corey, 1964)
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Summary of Brooks and Corey (1964)
Equation for the Coefficient of Permeability

A S.=(S-S,)/(1-5S,)
(u;-u )b
S = a bl S, = Measure of amount of water
e —
(ua - uw) S = Any degree of saturation
S, = Residual degree of saturation
k, = ks ! for (UE - uw) < (ua -u,), | A = Pore size distribution index
Ky =k Sg°  for (u, -u,) > (u,-u,),
60 = an empirical constant (U —U) 3234
a w/b
52 2+34 K,, = Kq 4 ~=mmmeemmmees
A
(ua - uw)




Table Suggested Values of the Constant &,
and the Pore Size Distribution Index,
A, for Various Soils

Soils o A Source
value walue

Uniform Sand 3.0 oo Irmavy (1954)
Soil and Porous 4.0 2.0 Corey (1954)
Rocks

Matural Sand 3.5 4.0 Averjanowv (1950)
Deposits A T

Pore size distribution for SWCC

Constant ¢ for Permeability

Brooks and Corey is a discontinuous function since it
starts at the Air Entry Value of the soil
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‘a’ parameter bears an inverse ke = 107 mss
relationship to the air entry value

1{5
1+al ”ap:g‘w )

Gardner’s equation
1958

Water coefficient of permeability, k,, (m/s)

Pressure head, [(u; — u, ) o...g9] (m)

10" 10° 10° 10%
Matric suction, (ug — u,,) (kPa)

Gardner's egquation for the water coefficient of
permeability as a function of the matric suction
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Integration Forms for the SWCC and
Permeability Function

(Childs and Collis-George, 1950); assumed that
the soil has a random distribution of pores of
various sizes

Used the summation of a series of terms from the
statistical probability of interconnections between
the pores

SWCC was used as an indication of the
configuration of the water-filled pores

Permeability equation was derived based on the
Poiseuille equation
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Prediction of the coefficient of permeability from
the soaoil-water characteristic curve

k., Top.9 67 < - . 2
= = e (2] = 1 — 2Za) fu, —wu )
b (BL) = 5 —== W Ei=i2 {12] )

=
Measured permeability

where: e e e m =
k _(&.), = calculated water coefficient of T

permeability, (mJs), for a

=1, 2,....,m

=)
"l
i
j
I
|
/

specified wvolumetric water coi
. (&), comesponding to the i th
Chl|dS and interval
. i = interval number which increase:
COIIIS_George with the decreasing wolumetric
(1950) WEI'[E_F -I::I:In_t-l:%r'lt.. For example, i
= 1 identifies the first imterval
that closely corresponds to the

Log Permeability
-

saturated wvolumetric water
content, &, ; i = M identifies the last
interval corresponding to the lowest

volumetric water content, &, :
on the experimental soil-water LOg suction
characteristic curve

i = a counter from "i" to "M~

—_— k., = measwured saturated coefficient of

permeability, (MMJ/s)
— k. = calculated saturated coefficient of
permeability, (Mm/s)

T. = surface tension of water (kKMNJ/m)
2. = water density (kg/m3)

g = grawvitational acceleration (mJSs?)
.. = absolute viscosity of water (Ms/m%)

s volumetric water content at
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saturation li.e., S = 1T00%)

. Gt (Green and Corey, 1971a)
Variable P IS a power P = a constant which accounts for the
app"ed to volumetric interaction of pores of wvarious
sizes. The magnitude of "p~
water content can be assumed to be equal to
— 2.0 (Green and Corey, 1971a)l
Assume P = 2.0 m = total number of intervals between

the saturated wvolumetric water
content, &,, and the lowest
volumetric water content, &,
on the experimental soil-water
. characteristic curve
ChlldS and I~ = total number of intervals computed
. between the saturated
COIIIS_George volumetric water content, &,

(1950) and zero volumetric water

content li.e., @, = Q)
(Mote: N = m (&, S (6, - &) ; m < MN; and
m = N when & = Q)
(u, - u,);, = matric suction {(kPa) corresponding
to the midpoint of the j th interval

Based on summation (or integration) along the SWCC

k — . =
ko (8,0 = 25— A3 {12) + 1 - 2i) (u, - u,)7)
i=1, 2,....,/Mm
where:
=
A, = adjusting constant ti_e-,lﬂa—ﬁ (m s~ " kiPa

2p, N
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Prediction of the coefficient of permeability from
the soil-water characteristic curve
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Soil-water characteristic curves

Lakeland fine sand

= 0.4
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Comparisons between calculated and measured
unsaturated permeabilities for Lakeland fine sand
(from Elzeftawy and Cartwright, 1981)
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Coefficient of permeability as a function of
wolumetric water comtert
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Relationship Between Soil-
Water Characteristic Curve
and the Coefficient of
Permeability for sand and
a Clayey Silt
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|
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Coefficient of permeability,
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g The soil-water characteristic

curve defines the amount of
water in the soll

— Air entry value initiates a
reduction in the coefficient
of permeability

Is possible for a sandy soil
to have a lower
permeability than a clayey
soil
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Typical Gardner’s Empirical Permeability Functions Shown for
a Sand and a Clayey Silt

Start of desaturation
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§ 10 6 . y of the simplest
E o7 | e permeability functions
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° = 108 the “a” and “n”
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Commonly used Permeability Functions

e van Genucthen (1980) 1 m
- swee |y
2
n-1 ny M
— k-function kr_{l_(“"”) “ﬂf“ﬂﬂ ] }
where m = 1-1/n [+ (e )]
____________________ e mmm -
1
. S= Cly)
e Fredlund and Xing (1994) In[e+("”)8}
— SWCC i A
Yy_ _
. Ilr?(ll?:—uW)HW(e) Hwyf(ua UW)Q\’N(ey )dy
— k-function g - ey
n 6 ‘9W(e )_6 '
I||n(18a—uw b oY S6,,(e” )dy
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Forms for the Permeability Function
Based on the SWCC

 Childs and Collis-George (1950)

— Summation
e van Genuchten (1980)
e van Genuchten-Burdine (1953, 1980)
e van Genuchten-Maulem (1976, 1980)

 Fredlund, Xing and Huang (1994)
— Integration form

 Rahardjo and Leong (2000)
— Closed form; raised SWCC to a power
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Difficulties with Hysteresis of SWCC and Permeability

0.35 - Volumetric water content versus matric
: suction
> 0.30 - - Saturated volumetric
S "“\ water content = porosity
£ 025} \ of soil, n = 30%
c 0.
= 0.9 \ Is there one Permeability
§ ol i N T Function for drying and
@ ' ina?
8 015 - another function for wetting”
=
y= 0.10 Dryin
g ~~4
2 005+  Wetting E— _
=
D i 1 | | | | |
0 5 10 15 20 25 30 35
Difference at Matric suction, (u, - u,) (kPa)
inflection point = Similar hysteresis forms in the volumetric water
0.2to 0.5 of alog content and water coefficient of permeability when
cycle plotted as a function of (u, - u,) for a naturally
deposited sand (from Liakopoulos, 1965a)
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Water coefficient of permiability versus
matric suction

Saturated coefficient
of permeability,

on
T

s
2
=
o _
g 4 ke=4.3x10% m/s
E Difference at w%
8 I3 inflection point =
5 E 0.2to 0.5 0f alog
[ cycle
'E = 2 \ Drying
£ X E/
@
8 1
; N
> ~
g | ! 1 H'_ — i i
0
0 5 10 15 20 25 30 35

Matric suction, (ua - uw) (kPa)

Similar hysteresis forms in the volumetric water
content and water coefficient of permeability when
plotted as a function of (u, - u,) for a naturally
deposited sand (from Liakopoulos, 1965a)
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Essentially no hysteresis is shown in the relationship

5 between water coefficient of permeability versus
volumetric water content.
4 No hysteresis in the

water content versus
permeability relationship

C
|

Wetting

k., (x10°®m/s)
]

.
1

Water coefficient of permeability,

ing

1 1
0 0.05 0.10 0.15 0.20 0.25 0.30

Volumetric water content, 0y,
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Must Live with Hysteresis in SWCC and
Permeability

Generally it is the Drying (or desorption) curve that
IS measured or estimated

Sometimes the Wetting (or Adsorption) curve might
be measured or estimated

The Wetting Curve might be estimated as being
shifted to the left by approximately (one half) log
cycle at the inflection point

Independent permeability functions can be
determined for both the Drying and the Wetting
processes

Some rigorous permeability models have been
proposed with scanning curves

Unsaturated Soil Technology
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