Modeling of Deformation Behavior of Concrete under Fatigue Loading

Yasuhiko SATO and Koji MATSUMOTO (Hokkaido University)

Deterioration Mechanism and Performance of Structures

COE

Fatigue -one of the major deterioration mechanism

Initiation period

COE

Workshop

Deterioration period

Flexural cracking

Hexagonal cracking pattern

Punching failure

Necessity of Advanced Prediction Method

COE

Outline of Study

COE

Workshop

Experiments for understanding stiffness degradation and strain development under compressive sustained and cyclic loading

> Elasto-plastic and fracture (EPF) model proposed by prof.Maekawa

Modeling of fatigue behavior

Sustained and fatigue
Stress-strain curve and fatigue life
Humidity and temperature

Outline of Experiment

COE

Experimental Results and Discussion (1)

COE

Workshop

<u>Stiffness reduction</u> High stress : → decrease Low stress : → contact

<u>Plastic strain</u>
Lower stress :
➡ Higher increment

Experimental Results and Discussion (2)

Viscous creep strain

Workshop

Total strain = Cracking strain + Viscous creep strain (Crack propagation) (Consolidation of mortal)

> It reduces concrete stiffness

It does not affect concrete stiffness

Experimental Results and Discussion (3)

3. Stiffness and cracking strain

Workshop

 Stiffness reduction can be expressed as cracking strain, which is deducted viscous creep strain from total strain.

- 4. Viscous creep strain
- ✓ Lower stress condition, ratio of viscous creep strain is higher.

Workshop MODELING(1)

COE

Elasto-plastic fracture (EPF) model

Time Effect

Fatigue model

Strain

Workshop MODELING(2)

COE

1. Fracture parameter under fatigue loading

It be expressed as cracking strain, $\varepsilon_{cra} = \varepsilon - \varepsilon_v$ (ε_v : viscous creep strain)

Fracture parameter
$$K_0 = \exp\left[-0.73\frac{\varepsilon_t - \varepsilon_v}{\varepsilon'_u}\left\{1 - \exp\left(-1.25\frac{\varepsilon_t - \varepsilon_v}{\varepsilon'_u}\right)\right\}\right]$$

Workshop MODELING(3)

COE

2. Stiffness changing in unloading and reloading

Workshop MODELING(4)

COF

3. Plastic strain under fatigue loading

Plastic strain under fatigue loading = Time-independent plastic strain

+ Time-dependent plastic strain

 $\varepsilon_p = \varepsilon_{p-m}$ (Maekawa's equation) + ε_{cr} (Creep strain prediction equation)

Modified Ayano's equation (creep strain prediction equation)

- $\varepsilon_{cr} = c_v \cdot c_e \cdot \varepsilon(t, t', t_0)$ $c_y = \frac{1+R}{2} \left(1+3.87\Delta\right)$ $R = \frac{\sigma_{\min}}{\sigma_{\max}}, \quad \Delta = \frac{\sigma_{\max} - \sigma_{\min}}{f_c'}$
- c_{v} : Coefficient for effect of cyclic loading
- c_e : Coefficient for effect of environmental condition

 $c_e = \frac{4W(1-h) + 350}{587} (0.0133T + 0.733) \quad \varepsilon(t,t',t_0): \text{ Ayano's creep strain prediction equation}$ Considered with temperature and humidity Applicable to fatigue loading

MODELING(5)

COE

Workshop

Creep strain under high stress

Applicable range of modified Ayano's equation: stress ratio ~50% It cannot be applied for high stress

Creep strain caused by cracking should be quantified. But it is expressed as multiplying coefficient β which is determined by experimental data.

Parametric Study(1)

No.	Max stress ratio (%)	Max stress ratio (%)	Temperature (deg)	Relative humidity (%)	Multiplying coefficient β for creep strain prediction equation
S 1			20	70	
S 2	80	0	35	15	20
S 3			5	100	
S 4		20	20	70	15
S5		40			10
S 6		60			5
S 7	90	Ο			30
S 8	65	U			2

Workshop Computed Results(1)

COE

Computed Results (2)

Effect of environmental condition

COE

Workshop Fatigue Life

Tepfers's equation

$$\frac{\sigma_{\max}}{f_c'} = 1 - 0.0685 \left(1 - \frac{\sigma_{\min}}{\sigma_{\max}} \right) \log_{10} N$$

Workshop Conclusion and Future Perspective

<u>Stress – strain curves of concrete under</u> compressive sustained and fatigue loading

/Strain components : Cracking strain Viscous creep strain /Stiffness reduction : Cracking strain

Parametric Study using the Model

/Fatigue life influenced by humidity and temperature