Long-term effects of geotechnical processes

Hokkaido University 15 February 2005

Kenichi Soga Reader in Geomechanics

Lunch Box (Bento)

- Appearance
- Price
- Expiration date
- Calorie

Geotechnical Construction

- Design
- Cost
- Sustainability/Maintenance
- Embodied Energy

Design options

- Construction short period
 - Design codes
- Maintenance periodical, some uncertainty
 - Life-cycle cost analysis, system performance
- Long-term solution rather slow. Large uncertainty.
 - Embodied energy evaluation, Life cycle environmental impact analysis

- Understand **long term effects** (geotechnical processes, embodied energy calculation)
- "Systematic" **monitoring** to deal with uncertainty in evaluating long-term effects
- Interpretation of data (direction and rate of change)
- Engineering ideas and solutions

Questions

- Does the construction process affect the long-term performance of geotechnical infrastructure?
- How much energy do we use to make a geotechnical structure? How much energy is used for its operation?
- What are the essential soil parameters and key indicators and how can we measure them?
- What long-term monitoring strategy should we adopt and at what scale?
- What are the emerging technologies that can be used for long-term monitoring?

Today's Bento Menu

- Long-term effects of tunnel construction
- Long-term effects of compensation grouting
- Long-term effects of piling
- Innovation in monitoring

Embodied Energy of Channel Tunnel Rail Link Contract 220

Kilometre Points: 0-15

St Paneras

Case Study: CTRL

• CTRL contract 220 drive.

Stratford Box

Tunnel Map Stratford to London St. Pancreas

Data Collection

Construction

Twin Bore Tunnel

TBM and Gantries

Segment Loading

TBM Tail Seal

Construction

Spoil Disposal at Stratford

Segment Factory

Kawasaki TBM

Cross-section of TBM

TBM in Harima Works, Japan

Equivalent CO2 Emission is 97.8 tonnes.

0.000059% of total UK greenhouse emissions in 2002

2.1% of all emissions associated with the UK construction industry in 1999.

Comparison of the embodied energy of selected structures.

Building	Source ref.	Embodied Energy (GJ)	TunnelE.E. BuildingE.E.
CTRL, Stratford to London St. Pancreas Twin bore Tunnel	[This project]	899,410	1
Typical UK Masonry house (100m ²)	[12]	414	2172
Average House, Australia (125 m ²)	[13]	625	1450
Standard New US Home, Michigan, USA (227 m ²)	[16]	942	927
Residential attached two storey Unit, Australia (82 m ²)	[14]	1,240	749
Standard Home, Toronto, Canada	[15]	2,350	382
Single Storey Office, UK (584 m ²)	[17]	2,494	361
Large Shop, Australia (5918 m ²)	[14]	60,837	15
3 Storey Office, Australia (6500 m ²)	[14]	69,875	13
Large Office Building, 52 storeys, Australia, (130,000 m ²)	[14]	2,589,400	0.35

THE LONDON UNDERGROUND TUBE NETWORK

- Area served: 3240km²
- 45km N-S 72km E-W
- line length: 392km
- 35% (140km) in deep tunnels 2.5million passengers/ day

- 80% (110km) cast iron
- Deepest tunnel 67.4m bgl
- Average tunnel depth 24.5m bgl

Existing Tunnels

- New construction interactions
 - pile driving nearby
 - neighbouring tunnel construction
- Long-term survival: what is the unexpired life?
 - chemical environment
 - earth and water pressures create ground loading
 - affected by construction, consolidation, creep, ageing
 - loads on lining must change as groundwater changes
- Design of new works
 - what ground actions to assume in what design life?
 - what influence from new construction activities?

LUL Kennington

LUL Kennington

- R rotary cored borehole
- P cable percussion borehole

LC self-boring load cell pressuremeter tests EP self-boring expansion pressuremeter tests PM self-boring permeameter tests

EPSRC / LUL Project

- London northern line at Kennington
 - 75 year old tunnel
 - ground investigation, in situ measurements, cores
- Piezometric conditions
 - pressure profiles, in situ self-boring permeameter
 - degree of drainage into tunnel
- Comparison of ground near and far from tunnel
 - lateral pressure; self-boring load cells and pressuremeter tests
 - very high quality cores; stiffness, and strength
- Predicted response to rising ground-water
 - FE based on in situ conditions and trends

Ground Investigation Works Kennington Loop

No - we are not building anything here!

London Underground Limited is carrying out research into the behaviour of all its tunnels as part of its commitment to keep London moving.

As part of this study, we are investigating the ground conditions around one of our tunnels which runs beneath Kennington Park. This involves drilling boreholes, and taking and testing soil samples.

The research is being carried out in collaboration with Cambridge University and the Geotechnical Consulting Group

The contractors are Soil Mechanics Umited with specialist sub-contractors Cambridge Insitu.

The work starts in early January and is supected to be completed by the end of March. On completion of the works the park will be reinstated as before.

For further information contact Nice Burgess, LUL Project Engineer, 4/13, 30 The South Colonnade, Canary Whart, E14 SEU

LUL Kennington stratigraphy

LUL Kennington: load cell data

Permeability

Field Permeability Measurement

LOW DISTURBANCE DRILLING SYSTEM

Ward and Thomas (1965)

Long term effect of tunnel construction processes

Anisotropy

Axial strain, ε_a (%)

Undrained Effective stress paths

Mean effective stress (kPa)

Mean effective stress (kPa)

Excess pore pressure generations will be different

Long-term

•Permeable tunnel lining leads to further settlement with time

•There will be slightly outward displacement around the tunnel

Performance of the tunnel lining

Anisotropic

Isotropic

Performance of the tunnel lining

Ward and Thomas (1965)

Grout Injections : Episode 23 16 June 1997 to 20 June 1997

Scale 1:500

--- Optical Plumb

Case A

Case B

Case C

Figure 4.3 Section of Modified Consolidometer

Different diameter specimens – simulate simultaneous injection at different spacings

Effect of OCR on Compensation Efficiency

Epoxy injection, R = 25 mm

Very low efficiency in NC clays confirmed by field trials

Effect of Grout Spacing

Pile set-up - Field Observation

- Driven piles in sand exhibit shaft capacity increases of typically 60% per log cycle time, though highly variable (20-170% per log cycle).
- Greater set up appears to occur in denser sands, with saturated and dry sands and not above 3m.
- References: Chow et al (1998), Jardine & Standing (1999)

Observation of soil movement during pile driving

Model pile is jacked into calibration chamber. Digital images captured through reinforced window. This example: silica sand, base resistance = 14 - 17 MPa.

Deformation of soil element around a pile

Images converted to displacement measurements using Particle Image Velocimetry (PIV) and close-range photogrammetry.

Measured strain paths

Tests on silica sand and carbonate sand showed similar behaviour, but carbonate sand produced large strains and lower stresses.

Triaxial tests

• The stress path was determined based on the pile driving mechanism. Creep was performed at various stages of the stress path.

•Note that an approximation was made to convert the 3D stress conditions to triaxial condition.

•A variety of granular materials (two silica sands, glass balls, glass shards) were tested to examine the effect of shape and particle strength.

Soil element with local strain devices

Triaxial test data

Pile-set-up due to dilatant creep

Fibre optic strain sensing in piles

- Installed at BRE test site, Chattenden
- Monitor minipiles in group during load tests
- Attached to rebar
- Optical fibre pretensioned
- Comparison with and complementary to vibrating wire strain gauges

Depth 7m, Minipiles 143mm dia, Central pile 300mm dia, 1.2m cube pile cap

Strain sensor technology comparison

	Vibrating wire	FBG (eg. Ando FB200)	BOTDR (eg. Ando AQ8603)
Sensor	Vibrating wire	Fibre Bragg grating	Optical fibre
Measurement	Discrete	Discrete	Distributed
Strain resolution	0.5-1με	0.1-10με	30με
Limit of spatial resolution	50-250mm	~2-20mm (length of grating)	1m
No. of measurements	1 per copper cable	Typically 40 sensors	1 measurement every 20cm Range 10km (max 20,000)
Measurement time	Real time	Real time	4-25 minutes
Detected physical quantity	Change of resonance in wire	Bragg reflection frequency shift	Brillouin gain spectrum frequency shift
Maximum strain	3,000με	~10,000με	~10,000με
Cost	Analyser ~£1-10k Sensor £80-250	Analyser £20k Gratings ~£50-300 each	Analyser £50k Fibre ~£.0.1-10/m
Features	Established technique	High strain accuracy	Distributed measurement

Brillouin optical time domain reflectometry (BOTDR)

Field installation

Cementation Foundations

Monitoring strain during load tests

Comparison with vibrating wire strain gauges (VWSG)

Distance down pile / m

What can it be used?

- Research
 - Load tests construction of load transfer functions
 - Clearer understanding of pile group behavior
- Monitoring lifespan of the structure (part of smart structures approach)
 - Post-earthquake diagnostic of a structure
 - Behavior due to long-term changes, (consolidation, capacity increase with time etc.)
- Adaptive Design
 - Tunnel excavation below an existing structure.
 - Changes in building designation.
 - Additional floors/adding removing walls.
- Reuse of old piles
 - Increased pile capacity due to kinematic hardening

Bankside123 Installation

- Long term bearing pile monitoring
 - φ1.6m, 50m deep piles,
 Strain sensors: BOTDR,
 vibrating wire, FBG

Monitoring of existing ThamesLink tunnel

- Tunnelling obliquely under Victorian masonry tunnel
 - Existing tunnel loaded by canal basin retaining wall
 - Directly below Midlands Main Line (MML)

Innovation in Monitoring of Aging Infrastructure

- Fiber optics
- Micro Electro Mechanical Sensors (MEMS)
- Wireless Network Systems

MEMS

Note:

- 1. Electrostatic excitation and capacitive detection tecnhique is adopted.
- 2. Microbeam thickness is 1 micrometer.
- 3. Gap between microbeam and bottom electorde is at least 1.5 micrometer.

Micro-machined Reflectors

Warnecke et al., 2001

Lucent Technologies

From David Moore (CUED)

Lucent Technologies

Fibre optics MEMS

Lucent Technologies

David Moore (CUED)

Axsun.com/David Moore (CUED)

Axsun.com

Wireless Network Systems

Modelling (Better understanding of long-term soil behaviour

Monitoring (optimum number of measurements)

Important soil properties?

- Permeability
- Undrained-partially drained-drained behavior
- Stiffness anisotropy

Boundary conditions

Interface permeability

Key Performance Indicators?

- Ground or structure movements
- Crack developments

Future of Geotechnical Engineers?

- Need to perform life cycle assessment and embodied energy evaluation of geotechnical structures/construction
- Requires risk assessment (social, environmental, economic)
- Long-term prediction and monitoring
- How can we incorporate this into design?
- Do we have enough technical knowledge on predicting (uncertain) long-term future events?

Thank you