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Lunch Box (Bento) Geotechnical Construction
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Design options

e Construction — short period
— Design codes

 Maintenance — periodical, some uncertainty
— Life-cycle cost analysis, system performance

 Long-term solution — rather slow. Large uncertainty.

— Embodied energy evaluation, Life cycle environmental impact
analysis

. ) Time
construction maintenance
| | g <>

« Environmental solution/monitoring/maintenance

Design options




Resource

' nservation
management Protection | | Conservatio

Future generation

Present stage

Long-term

ﬁ consequences

* Understand long term effects (geotechnical processes,
embodied energy calculation)

 “Systematic” monitoring to deal with uncertainty in evaluating
long-term effects

* Interpretation of data (direction and rate of change)

* Engineering ideas and solutions



Questions

Does the construction process affect the long-term
performance of geotechnical infrastructure?

How much energy do we use to make a geotechnical
structure? How much energy is used for its operation?

What are the essential soil parameters and key
indicators and how can we measure them?

What long-term monitoring strategy should we adopt and
at what scale?

What are the emerging technologies that can be used for
long-term monitoring?



Today’s Bento Menu

Long-term effects of tunnel construction

Long-term effects of compensation
grouting

Long-term effects of piling
Innovation in monitoring



Embodied Energy of Channel Tunnel Rall
Link Contract 220
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Case Study: CTRL

e CTRL contract 220 drive.

Stratford Box

Tunnel Map Stratford to
London St. Pancreas



Data Collection
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Construction

Twin Bore Tunnel
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Construction

Segment Factory



Kawasakl TBM

Reverse and _
articulation jack Tail seal Tunnel ining

Cutting head ‘ Scraw closing gate
Shigld jeck

Cross-section of TBM TBM in Harima Works,

Japan



Breakdown of Tunnel Embodied Energy of CTRL 220 Construction

Construction

Energy
30%

(266 GJ)

Material Processing
Energy
3%
(30 TJ)

Embodied Energy
of Raw Materials

65%
(584 TJ) Transportation
Energy
2%
(20 TJ)

Equivalent CO2 Emission is 97.8 tonnes.
0.000059% of total UK greenhouse emissions in 2002

2.1% of all emissions associated with the UK construction industry in
1999.



Pulverized fuel Ash
4%

Sodium Silicate
Total Mass m
Steel
%
Aggregates* Slag1Co/emen12 °
71% o
Bentonite
1%
Others

2%

Tail seal Grease
5% Sodium Silicate

8%
Bentonite
0%

Cement

Embodied Energy *™*

Others
5%

Aggregates
3%

22%



Comparison of the embodied energy of selected structures.

Building Sour ce ref. Embodied Energy TunnelE.E.
(GJ) BuildingE.E.
CTRL, Stratford to London St. [This project] 899,410 1
Pancreas Twin bore Tunnel
Typical UK Masonry house [12] 414 2172
(100m?)
Average House, Australia [13] 625 1450
(125 n?)
Standard New US Home, [16] 942 927
Michigan, USA (227 m?)
Residential attached two storey [14] 1,240 749
Unit, Australia (82 m?)
Standard Home, Toronto, [15] 2,350 382
Canada
Single Storey Office, UK [17] 2,494 361
(584 n?)
Large Shop, Australia [14] 60,837 15
(5918 m?)
3 Storey Office, [14] 69,875 13
Australia (6500 m?)
Large Office Building, 52 [14] 2,589,400 0.35

storeys, Australia, (130,000 m?)




Contribution to Total Embodied Energy (%
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THE LONDON UNDERGROUND
UNDERGROUND TUBE NETWORK

 Area served: 3240km? * 80% (110km) cast iron
* 45km N-S 72km E-W * Deepest tunnel 67.4m bgl
* line length: 392km » Average tunnel depth 24.5m bgl|

* 35% (140km) in deep tunnels <« 2.5million passengers/ day
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Existing Tunnels

* New construction interactions
— pile driving nearby
— neighbouring tunnel construction
« Long-term survival: what is the unexpired life?
— chemical environment
— earth and water pressures create ground loading
— affected by construction, consolidation, creep, ageing
— loads on lining must change as groundwater changes

» Design of new works
— what ground actions to assume in what design life”?
— what influence from new construction activities?
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LUL Kennington

tunnel NOI’th . y
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R rotary cored borehole L C self-boring load cell pressuremeter tests
P cable percussion EP self-boring expansion pressuremeter tests
borehole PM self-boring permeameter tests



EPSRC / LUL Project

London northern line at Kennington
— 75 year old tunnel
— ground investigation, in situ measurements, cores

Piezometric conditions

— pressure profiles, in situ self-boring permeameter

— degree of drainage into tunnel

Comparison of ground near and far from tunnel

— lateral pressure; self-boring load cells and
pressuremeter tests

— very high quality cores; stiffness, and strength

Predicted response to rising ground-water
— FE based on in situ conditions and trends
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LUL Kennington stratigraphy
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Depth d: m byl

Pore water
pressures
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Depth d: m bgl
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Pore water pressure u: kPa

100 110 120 130 140 150

X X

X Tunnel piezometer data

— Linear regression of borehole piezometer data (line L Figure 5)




LUL Kennington: load cell data

cell 4

Data expressed in kPa




Permeabillity

Coefficient of horizontal permeability ky,: m/s
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Field Permeability Measurement
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Long term effect of tunnel construction processes
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Normalised secant undrained Young's modulus, E y sec/po’

Anisotropy
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Excess Pore Pressure Contour (kPa)
3D | sotropic 3D Anisotropic
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eSimilar pattern but different magnitude between 2D and 3D

*Different pattern between isotropic and anisotropic soil because

of difference in stress path directions



(ca-or) (kPa)
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Long-term

*Permeable tunnel lining leads to further settlement with time

*There will be dlightly outward displacement around the tunnel



Change in diameter (mm)

Performance of the tunnel lining

Anisotropic | sotropic

Vertical diameter

Horizontal diameter

100 1000 10000

100 1000 10000 100000

100G

Vertical diameter Horizontal diameter

Time after short-term (days) Time after short-term (days)



Hoop force (kN)
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Grout Injections : Episode 23
16 June 1997 to 20 June 1997
Scale 1:500
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Settlement Monitoring PointsSP T-N
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Settlement (mm)

Settlement (mm)

20

10

—— Field data
—=— FE data

50
Time (days)

100 150

—— Field data
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Case B
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Cylindrical Casing
(Brassor Steel)

Piston with
Drainage Holes

Porous Vyon Plate

Clay Specimen

Copper Injection Needle
Porous Vyon Plate

Drainage Plate

Note: Not to Scale

Figure 4.3 Section of Modified Consolidometer

Different diameter specimens — simulate simultaneous
Injection at different spacings



Effect of OCR on Compensation Efficiency

120%

100%

80%

40%
20%

Grout efficiency

0%
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Epoxy injection, R = 25 mm

60%

10
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. OCR=1

Very low efficiency in NC clays confirmed by field trials



Effect of Grout Spacing
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Pile set-up - Field Observation

Shaft capacity increase Qs/Qso

Pile capacity increase Qt/Qto
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« Driven piles in sand exhibit shaft capacity increases of typically 60%
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4
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0.1
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1000

per log cycle time, though highly variable (20-170% per log cycle).

« Greater set up appears to occur in denser sands, with saturated and

dry sands and not above 3m.
« References: Chow et al (1998), Jardine & Standing (1999)
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Observation of soil movement during pile driving

Model pileisjacked into calibration chamber.
Digital images captured through reinforced window.

This example: silicasand, base resistance = 14 - 17 MPa.



Defor mation of soil element around a pile
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|mages converted to displacement measurements using Particle
Image Velocimetry (PIV) and close-range photogrammetry.



Measured strain paths

a
o
=
(@)

| Plé_ne of | | | | y/2‘ Plane of pro;ectlon |
40 4o, PO ection g 78\ MM.\:VV:SI
pr— 30 I € | 6 | &y gh
B S\i € & & g 4+ J
—p < w, 20 + \WM_SI W g,
£ & 2 Compresson
% 10 €h § T
5 TCompra@ion ~—-&, g 0 I ey
offset £ 0 w — T c, £ | Extension i
¢ =) Extension vV A -2
A\ 10 - ] Sy
A=Y f‘”’—glu -4 %ﬂr’ i
20+ 16l ey ]
h
P 0 8 6 -4 2 o 2 4% 30 8 6 4 2 0 2 4
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Tests on silica sand and carbonate sand showed similar behaviour,
but carbonate sand produced large strains and lower stresses.



Triaxial tests

 The stress path was determined based on the pile driving mechanism. Creep
was performed at various stages of the stress path.

*Note that an approximation was made to convert the 3D stress conditions to
triaxial condition.

A variety of granular materials (two silica sands, glass balls, glass shards)
were tested to examine the effect of shape and particle strength.

| Triaxial Stress Path
1000

800 |-

q (kPa)
()]
S

Deviatoric Stress,
N
o
o

0 <\ ................... ExtenS|oncreepstage ....... ............................

~@ (48 hours to 3 weeks)
~

-200 e ' @
0 200 400 600 800

Soil element with local strain devices Mean Effective Stress, p (kPa)

k g




Deviatoric Strain (%)

Volumetric Strain (%)

0.25

0.20

0.15
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0.05

A

Triaxial test data

Stress State at Creep : p' = 600 kPa and g = 800 kPa
All Samples Were Prepared With Relative Density of Approximately 70%.

,~ Sand
4
L , y
/
/// \ 7
Glass Ball /
/
— //
\ L -
///, ///

Leighton Buzzard
¥ Uniform Silica Sand

0.00 | | l l l l
101 102 103 104 105
0.05 - Montpellier Natural Sand _ /_//A\\
———————— v
0.00 f———————eeem————=—T" \
-0.05 L i
Dilation ~C
-0.10 L .
Glass Ball —>
-0.15 | \\\ Leighton Buzzard
™. Uniform Silica Sand
020 |
025 |
-0.30 I | | | L
100 101 102 108 104 105



Pile-set-up dueto dilatant creep
= 1. Triaxial creep test (stress constant) ———
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c .
v contraction
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dilation
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time

2. Soil around apile (kinematic restraint) |
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set-up by mean pressure increase
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Fibre optic strain sensing in
niles

Installed at BRE test
site, Chattenden

Monitor minipiles in Depth 7m,

- Minipiles
group during load tests +43mm dia.
Attached to rebar Central pile

: : 300mm dia,
Optical flbre 1 9m cube
pretensioned pile cap

Comparison with and
complementary to
vibrating wire strain
gauges




Strain sensor technology comparison

Vibrating wire

FBG (eg. Ando FB200)

BOTDR (eg. Ando

AQ8603)
Sensor Vibrating wire Fibre Bragg grating Optical fibre
Measurement Discrete Discrete Distributed
Strain resolution 0.5-1pe 0.1-10pe 30ue
Limit of spatial 50-250mm ~2-20mm (length of m
resolution grating)

No. of measurements

1 per copper cable

Typically 40 sensors

1 measurement every
20cm
Range 10km (max 20,000)

Measurement time

Real time

Real time

4-25 minutes

Detected physical

Change of resonance in wire

Bragg reflection frequency

Brillouin gain spectrum

quantity shift frequency shift
Maximum strain 3,000ue ~10,000ue ~10,000pe
Cost Analyser ~£1-10k Analyser £20k Analyser £50k
Sensor £80-250 Gratings ~£50-300 each Fibre ~£.0.1-10/m
Features Established technique High strain accuracy Distributed measurement




Brillouin optical time domain
reflectometry (BOTDR)

B Measurement principle =
Launch pulsed light I' o~ maax -
Optical fiber - ] y HEHTH
T { . . -lldI L]
> 3 % 2=
Detect Brillouin v =
scattered light BOTDR

Distributed strain sensor - BOTDR

Average strain over 1m every 20cm

Range ~5-10km

Resolution 30ue (0.003%)

Low cost sensors - optical fibre
éﬁﬁfﬁi 5 - 25 minutes per measurement
LA Can link or switch between fibres

suitable for momtoring various large
scale constructions

=cattered light power

Diagram courtesy of ntt.co.jp/news
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Monitoring strain during load
tests
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Comparison with vibrating wire
strain gauges (VWSG)
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What can it be used?

Research
— Load tests — construction of load transfer functions
— Clearer understanding of pile group behavior

Monitoring lifespan of the structure (part of smart
structures approach)

— Post-earthquake diagnostic of a structure

— Behavior due to long-term changes, (consolidation, capacity

increase with time etc.)

Adaptive Design

— Tunnel excavation below an existing structure.

— Changes in building designation.

— Additional floors/adding removing walls.

Reuse of old piles
— Increased pile capacity due to kinematic hardening



Piles are subjected to additiona
O loads due to bridging effect
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Bankside123 Installation

* Long term bearing pile
monitoring

— $1.6m, 50m deep piles,
Strain sensors: BOTDR,
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Monitoring of existing
ThamesLink tunnel

« Tunnelling obliquely under Victorian masonry tunnel
— Existing tunnel loaded by canal basin retaining wall
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> Canal basin
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right 2004 ————————————————————————
Reproduced from Ordnance Survey of Northern Ireland mapping with the
permission of the Director and Chief Executive, © Crown Copyright.




Innovation in Monitoring of Aging
Infrastructure
* Fiber optics
* Micro Electro Mechanical Sensors (MEMS)
* Wireless Network Systems



MEMS

Note:

1. Electrostatic excitation and capacitive detection tecnhique is adopted.

2. Microbeam thickness is 1 micrometer.

3. Gap between microbeam and bottom electorde is at least 1.5 micrometer.

Connection Tab for Microbridge
Connection Tab for 15 ‘ (Upper Electrode)

Bottom Electrode ™ N <o |

e e
E ‘ 225 22.5 ‘
P = -
S } 60 60 }
\ Bottom Driving
Electrode
1 50 ‘ 62.5 125 62.5 1 50 |
; ;
Substrate

Schematic drawing of a mircobeam (all units in micrometer)




Micro-machined Reflectors

Silicon
| mibcrofeam

Lucent Technologies Lucent Technologies



Fibre optics MEMS

Hilicon nirde
micro clips

David Moore (CUED)
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Axsun.com/David Moore (CUED) Axsun.com



Wireless Network Systems




Monitoring
(optimum number
of measurements)

Modelling (Better
understanding of

long-term soil
behaviour
Important soil properties? Key Performance Indicators?
* Permeability
. Undrained-partially » Ground or structure
drained-drained @ movements
behavior

. Stiffness anisotropy * Crack developments

Boundary conditions
 Interface permeability



Future of Geotechnical Engineers?

* Need to perform life cycle assessment and
embodied energy evaluation of geotechnical
structures/construction

* Requires risk assessment (social, environmental,
economic)

* Long-term prediction and monitoring
 How can we incorporate this into design?

Do we have enough technical knowledge on
predicting (uncertain) long-term future events?



Thank you
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