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Lunch Box (Bento)

• Appearance 

• Price

• Expiration date

• Calorie

Geotechnical Construction

• Design 

• Cost

• Sustainability/Maintenance

• Embodied Energy



Current

Source zone cleanup

Containment

Remediation

Plume restoration

Brownfield 
redevelopment

Maintenance & 
Reinforcement& 
Demolish



Design options
• Construction – short period

– Design codes

• Maintenance – periodical, some uncertainty
– Life-cycle cost analysis, system performance

• Long-term solution – rather slow. Large uncertainty. 
– Embodied energy evaluation, Life cycle environmental impact 

analysis

Environmental solution/monitoring/maintenance

maintenance

Design options

construction Time



Future generation

Long-term 
consequences

Present stage

Resource 
management Protection Conservation

• Understand long term effects (geotechnical processes, 
embodied energy calculation)

• “Systematic” monitoring to deal with uncertainty in evaluating 
long-term effects

• Interpretation of data (direction and rate of change)

• Engineering ideas and solutions



Questions
• Does the construction process affect the long-term 

performance of geotechnical infrastructure?

• How much energy do we use to make a geotechnical
structure? How much energy is used for its operation?

• What are the essential soil parameters and key 
indicators and how can we measure them?

• What long-term monitoring strategy should we adopt and 
at what scale?

• What are the emerging technologies that can be used for 
long-term monitoring?



Today’s Bento Menu

• Long-term effects of tunnel construction
• Long-term effects of compensation 

grouting
• Long-term effects of piling
• Innovation in monitoring



Embodied Energy of Channel Tunnel Rail 
Link Contract 220



Case Study: CTRL

• CTRL contract 220 drive.

Tunnel Map Stratford to 
London St. Pancreas

Stratford Box



Data Collection



Construction

TBM and Gantries
Segment Loading

Twin Bore Tunnel



Construction

Segment Factory

Spoil Disposal at Stratford



Kawasaki TBM 

Cross-section of TBM TBM in Harima Works, 
Japan



Breakdown of Tunnel Embodied Energy of CTRL 220 Construction

Construction
Energy

30%
(266 GJ)

Material Processing
Energy

3%
(30 TJ)

Transportation
Energy

2%
(20 TJ)

Embodied Energy
of Raw Materials

65%
(584 TJ)

Equivalent CO2 Emission is 97.8 tonnes. 

0.000059% of total UK greenhouse emissions in 2002

2.1% of all emissions associated with the UK construction industry in 
1999.



Steel
22%

Cement
57%

Tail seal Grease
5%

Aggregates
3%

Sodium Silicate
8%

Bentonite
0%

Others
5%

 

Aggregates*1
71%

Cement
17%

Slag Cement
1%

Bentonite
1%

Others
2%

Steel
2%

Sodium Silicate
2%

Pulverized fuel Ash
4%

Total Mass

Embodied Energy



Comparison of the embodied energy of selected structures.

0.352,589,400[14]Large Office Building, 52 
storeys, Australia, (130,000 m2) 

1369,875[14]3 Storey Office,
Australia (6500 m2)

1560,837[14]Large Shop, Australia 
(5918 m2)

3612,494[17]Single Storey Office, UK
(584 m2)

3822,350[15]Standard Home, Toronto, 
Canada

7491,240[14]Residential attached two storey 
Unit, Australia (82 m2)

927942[16]Standard New US Home, 
Michigan, USA (227 m2)

1450625[13]Average House, Australia
(125 m2)

2172414[12]Typical UK Masonry house 
(100m2)

1899,410[This project]CTRL, Stratford to London St. 
Pancreas Twin bore Tunnel

Embodied Energy
(GJ)

Source ref.Building
..

..
EBuildingE

ETunnelE
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THE LONDON UNDERGROUND 
TUBE NETWORK

• Area served: 3240km2

• 45km N-S   72km E-W
• line length: 392km
• 35% (140km) in deep tunnels

• 80% (110km) cast iron
• Deepest tunnel 67.4m bgl
• Average tunnel depth 24.5m bgl
• 2.5million passengers/ day
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1908
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Existing Tunnels
• New construction interactions

– pile driving nearby
– neighbouring tunnel construction

• Long-term survival: what is the unexpired life?
– chemical environment
– earth and water pressures create ground loading 
– affected by construction, consolidation, creep, ageing
– loads on lining must change as groundwater changes

• Design of new works
– what ground actions to assume in what design life?
– what influence from new construction activities?



LUL Kennington



LUL Kennington

R rotary cored borehole
P cable percussion 

borehole

tunnel 

3m 3m 1.5m 5m 10m

R2

4m

4m

4m

R1

LC1 LC6LC5LC4LC3LC2

P1
P6P5P4P3P2

PM1 PM3PM2 EP1

North

LC self-boring load cell pressuremeter tests
EP self-boring expansion pressuremeter tests
PM self-boring permeameter tests



EPSRC / LUL Project
• London northern line at Kennington

– 75 year old tunnel
– ground investigation, in situ measurements, cores

• Piezometric conditions
– pressure profiles, in situ self-boring permeameter
– degree of drainage into tunnel

• Comparison of ground near and far from tunnel
– lateral pressure; self-boring load cells and

pressuremeter tests
– very high quality cores; stiffness, and strength

• Predicted response to rising ground-water
– FE based on in situ conditions and trends









LUL Kennington stratigraphy
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LUL Kennington: load cell data
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Permeability
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Field Permeability Measurement

Picture-1: Self-boring pressuremeter

L

D

Max. depth
drilled

Bottom of cutting
shoe after pulling
back

Water filled 
cavity

Lateral
flow

Vertical flow

Lower end of
membrane





Springline

Crown

Crown

Springline

Ward and Thomas (1965)



Long term effect of tunnel construction processes

Pore 
pressure

Horizontal displacement
measurement points 4m 
and 16m

Instrument line

140m 120m

50m

40m

K0 = 1.5
Water table 5 m below ground surface
Hydrostatic

St. James’s Park
Depth = 31m
Diameter = 4.85m



Anisotropy
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•Similar pattern but different magnitude between 2D and 3D
•Different pattern between isotropic and anisotropic soil because

of difference in stress path directions
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Long-term

0 days7.5 days26.4 days48 days590 days19 years

•Permeable tunnel lining leads to further settlement with time

•There will be slightly outward displacement around the tunnel
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Performance of the tunnel lining
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May 27 June 13 June 17

45.5 m 17.5 m
Case A Case B Case C

12.8 m

Shield tunnel
20.0 m

3.5 
m 7.0 

m

Monitoring Points
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Date of the tunnel face 
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Alluvial clay 2
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Drainage Hole

Applied
Load

Piston with
Drainage Holes

Clay Specimen

Porous Vyon Plate

Porous Vyon Plate

Copper Injection Needle

Drainage Plate

Cylindrical Casing
(Brass or Steel)

Figure 4.3  Section of Modified Consolidometer
i 4 3 S i f M difi d C lid

Note:  Not to Scale

Different diameter specimens – simulate simultaneous 
injection at different spacings



Effect of OCR on Compensation Efficiency
Grouting Efficiency vs TV
(R=25mm, epoxy injection)
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Effect of Grout Spacing
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Pile set-up - Field Observation
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• Driven piles in sand exhibit shaft capacity increases of typically 60% 
per log cycle time, though highly variable (20-170% per log cycle). 

• Greater set up appears to occur in denser sands, with saturated and 
dry sands and not above 3m.

• References: Chow et al (1998), Jardine & Standing (1999)



Observation of soil movement during pile driving

Model pile is jacked into calibration chamber. 
Digital images captured through reinforced window.
This example: silica sand, base resistance = 14 - 17 MPa.



Deformation of soil element around a pile

Images converted to displacement measurements using Particle 
Image Velocimetry (PIV) and close-range photogrammetry.



Measured strain paths
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Tests on silica sand and carbonate sand showed similar behaviour, 
but carbonate sand produced large strains and lower stresses.



Triaxial tests
• The stress path was determined based on the pile driving mechanism. Creep 
was performed at various stages of the stress path.

•Note that an approximation was made to convert the 3D stress conditions to 
triaxial condition.

•A variety of granular materials (two silica sands, glass balls, glass shards) 
were tested to examine the effect of shape and particle strength.
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Triaxial Stress Path
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Extension creep stage
(48 hours to 3 weeks)

CSL

Soil element with local strain devices



Triaxial test data
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Pile-set-up due to dilatant creep
1. Triaxial creep test (stress constant)

εv

time

contraction

dilation

σr’

time

relaxation stage

set-up by mean pressure increase

σr’

2. Soil around a pile (kinematic restraint)
σr’



Fibre optic strain sensing in 
piles 

• Installed at BRE test 
site, Chattenden

• Monitor minipiles in 
group during load tests

• Attached to rebar
• Optical fibre 

pretensioned
• Comparison with and 

complementary to 
vibrating wire strain 
gauges

Depth 7m,
Minipiles
143mm dia,
Central pile
300mm dia,
1.2m cube 
pile cap



Strain sensor technology comparison

DistributedDiscreteDiscreteMeasurement

Distributed measurementHigh strain accuracyEstablished techniqueFeatures

Analyser £50k
Fibre ~£.0.1-10/m

Analyser £20k
Gratings ~£50-300 each

Analyser ~£1-10k
Sensor £80-250

Cost

~10,000µε~10,000µε3,000µεMaximum strain

Brillouin gain spectrum 
frequency shift

Bragg reflection frequency 
shift

Change of resonance in wireDetected physical 
quantity

4-25 minutesReal timeReal timeMeasurement time

1 measurement every 
20cm

Range 10km (max 20,000)

Typically 40 sensors1 per copper cableNo. of measurements

1m ~2-20mm (length of 
grating)

50-250mmLimit of spatial 
resolution

30µε0.1-10µε0.5-1µεStrain resolution

Optical fibreFibre Bragg gratingVibrating wireSensor

BOTDR (eg. Ando 
AQ8603)

FBG (eg. Ando FB200)Vibrating wire



Brillouin optical time domain 
reflectometry (BOTDR)

Distributed strain sensor – BOTDR
Average strain over 1m every 20cm
Range ~5-10km
Resolution 30µε (0.003%)
Low cost sensors  - optical fibre
5 - 25 minutes per measurement
Can link or switch between fibres

Diagram courtesy of ntt.co.jp/news



Field installation



Monitoring strain during load 
tests
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Comparison with vibrating wire 
strain gauges (VWSG)



What can it be used?
• Research

– Load tests – construction of load transfer functions
– Clearer understanding of pile group behavior

• Monitoring lifespan of the structure (part of smart 
structures approach)
– Post-earthquake diagnostic of a structure
– Behavior due to long-term changes, (consolidation, capacity 

increase with time etc.)     
• Adaptive Design

– Tunnel excavation below an existing structure.
– Changes in building designation. 
– Additional floors/adding removing walls. 

• Reuse of old piles
– Increased pile capacity due to kinematic hardening



Piles are subjected to additiona
loads due to bridging effect
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Bankside123 Installation

• Long term bearing pile 
monitoring
– φ1.6m, 50m deep piles, 

Strain sensors: BOTDR, 
vibrating wire, FBG



Monitoring of existing 
ThamesLink tunnel

• Tunnelling obliquely under Victorian masonry tunnel
– Existing tunnel loaded by canal basin retaining wall
– Directly below Midlands Main Line (MML)

MML 
above

Existing 
ThamesLink
tunnel

Canal basin

New tunnel

King’s Cross
St Pancras Reproduced from Ordnance Survey of Northern Ireland mapping with the 

permission of the Director and Chief Executive, © Crown Copyright.

3.6m

6.5m

8.5m



Innovation in Monitoring of Aging 
Infrastructure

• Fiber optics
• Micro Electro Mechanical Sensors (MEMS)
• Wireless Network Systems



MEMS
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Schematic drawing of a mircobeam (all units in micrometer)

Note:
1. Electrostatic excitation and capacitive detection tecnhique is adopted.
2. Microbeam thickness is 1 micrometer.
3. Gap between microbeam and bottom electorde is at least 1.5 micrometer.



Micro-machined Reflectors

Warnecke et al., 2001
From David Moore (CUED)

Lucent Technologies Lucent Technologies



Fibre optics MEMS

David Moore (CUED)Lucent Technologies

Axsun.com/David Moore (CUED) Axsun.com



Wireless Network Systems

  



Modelling (Better 
understanding of 
long-term soil 
behaviour

Monitoring 
(optimum number
of measurements)

Important soil properties?
• Permeability
• Undrained-partially 

drained-drained 
behavior

• Stiffness anisotropy

Boundary conditions
• Interface permeability

Key Performance Indicators?

• Ground or structure 
movements

• Crack developments



Future of Geotechnical Engineers?

• Need to perform life cycle assessment and 
embodied energy evaluation of geotechnical 
structures/construction

• Requires risk assessment (social, environmental, 
economic)

• Long-term prediction and monitoring
• How can we incorporate this into design? 
• Do we have enough technical knowledge on 

predicting (uncertain) long-term future events?



Thank you
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