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| ntroduction

e Soll mechanics textbooks do not address
the full scope of problems encountered In
geotechnical engineering

e Textbooks for undergraduate students
focus on the behavior of saturated soils

e Undergraduate students are generally
taught very little about unsaturated soll

behavior é!



Personal Observation Upon
Graduation From University

* After graduation | realized | had been taught soil
mechanics courses related to saturated soil behavior
and then found myself faced with attempting to solve
many problems where the soil was unsaturated. After
2 years | observed that about 90% of the problems |
had addressed involved soils with negative pore-water
pressures. | began to feel that | had been taught soill
mechanics for saturated soils and then had to go out
and practice soil mechanics for unsaturated solils. |

was Il|-equipped to face a world with unsaturated soif
mechanics problems G

U4



Undergraduate Student Needs

e Undergraduate engineering students need.:

- to be better-equipped to face a geotechnical
world with unsaturated solls problems

- to better understand the basic differences
between the behavior of saturated and
unsaturated solls

- to know the concepts and fundamentals
behind unsaturated soil behavior and learn to

think the way the unsaturated soll
behaves” @)



|s There a Need to Teach
Unsaturated Soil Mechanics?

e Many Civil Engineering problems involve the
Interaction between the climate and the
unsaturated soll zone (i.e., flux boundary

conditions)
- Foundations of many structures are near

ground surface
- EXxpansive solls problems impose a large
flnancial burden on society in many countries

- Human Beings usually contaminates the
environment starting at the ground surface @)



Teaching Unsaturated Soil Mechanics
at the Undergraduate L evel

e To-date there has been little desire to teach
unsaturated soil mechanics at the
undergraduate level

e |t may be easier to introduce the basic
concepts of unsaturated soil mechanics at the
undergraduate level than at the graduate level

e Itis suggested that the basic concepts of
saturated-unsaturated soil mechanics be

taught using simple illustrative diagrams @



Broad Categorization of Soil Mechanics Based on
Stress State Variables
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The“ Real World” has a Moisture
Flux Boundary Condition

e Saturated soil mechanics has largely ignored
ground surface moisture flux conditions

e Changes In negative pore-water pressure
(and consequently matric suction) in

unsaturated solls can be caused by:
- precipitation and infiltration

- evaporation

- transpiration

- Covers ﬁ g’
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Long Term Response of the Water
Tableto Arid Climatic Conditions

pressures

(Evaporation > Precipitation)

Arid regions

\9 Positive pore-water
Q[c pressures

Urated Soil Meche @




General Objectives of Teaching
Undergraduate Soil Mechanics

e To0 present the basic concepts and
fundamental principles of soil mechanics
based on the student’s background In
mechanics, physics and mathematics

e To provide background knowledge for a life-
time of learning geotechnical issues

e Teaching should integrate modern learning
principles, teaching techniques and use
learning aids (From several recent Soil Mechanics

Textbooks) @




More Specific Objectives of Teaching
Undergraduate Soil Mechanics

e Undergraduate engineering students should

learn:

- theories related to the physical and mechanical
properties of solls

- means whereby relevant measurements can be
made In the laboratory or in the field

- application of the theories and measurements to
the analysis of geotechnical problems

- procedures whereby the physical and mechanical

properties can be estimated or approximated @




Need for a New Paradigm for
Unsaturated Soil Mechanics

e Implementation of Unsaturated Soll

Mechanics Generally Requires:

- the estimation of unsaturated solil property
functions, USPFs

- USPFs are estimated largely through use of
the solil-water characteristic curves, SWCC

- a new paradigm or mindset Is required that
respects estimation and approximation

procedures for USPFs @
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Fifteen bar Pressure
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What 1s an Unsaturated Soil?

e Definition:

- a soll that has water and air in the voids
separated by a contractile skin (air-water
Inter-phase)

- a soll where the pore-water pressures are
negative relative to the pore-air pressures

Partly Saturated & Partially Saturated terms seldom used

e Note: the smallest amount of air renders a soil
unsaturated but it is the relative pressures
between air and water that iIs most important
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Categorization of Soill
Mechanics Based on the
Nature of the Fluid Phase

Dry soill
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Categorization of Soil Mechanics
Based on Geological Origins
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Example Where ‘Soll Classification’
Pertains to Unsaturated Soil Mechanics

e Shrinkage curve:
~ subdivides solls Iinto states:

» the liquid state Subdivisions between
» the plastic state “states” relate to

» the solid state ' P
» the semi-solid state soll suction levels

- Is the response of an initially slurried soll to
an increase Iin soll suction
— relates water contents to the SWCC

H
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Example of the Relevance of the
‘Grain-Size Distribution’ to
Unsaturated Soil Mechanics?

e The grain-size distribution curve:
- provides a measure of the soll solids
distribution
- The inverse of the soil solids distribution
(.e., distribution of the voids) forms the
basis for the estimation of the SWCC
- Require the use of the Capillary Theory

to calculate the SWCC @
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Topics of Unsaturated Soil Mechanics
Covered In Classical Soils Mechanics

e Soll compaction and volume-mass
relationships

e Reveals that two volume-mass
constitutive relationships are necessary
to compute changes In soll properties
during any process

Se=w G, @
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The Centrality of Stress State
Variables

e Undergraduate students are generally taught
about stress tensors In classes such as

strength of materials
e Stress state variables combine to form of two
Independent stress tensors for unsaturated

solls
e A soil always behaves in response to the

stress state variables and changes in the
stress state variables @)



Stress State at a Point
above and below the
Water Table




Saturated Soil Mechanics as a Special
Case of Unsaturated Soil Mechanics

e There is a smooth change from the
stress state for an unsaturated soll to

that of saturated soill:
~ water pressure approaches to air pressure
~ matric suction stress tensor drops out
- stress state reverts to the single effective
stress tensor

e Smooth transitions should also exist for

all constitutive relationships @)



What i1sthe Primary Need and
Responsibility of the University
Professor of Geotechnical
Engineering?

e To teach all students the fundamental
concepts of saturated-unsaturated soll
behavior and thereby teach the
students to “think the way saturated-
unsaturated soil systems behave”!

H



Differences between Unsaturated and
Saturated Soll Mechanics

e Unsaturated soll properties are highly
nonlinear

e Constitutive relations for the classic
areas of soll mechanics need to be
extended to embrace unsaturated solls

e Formulations need to be extended

e Solutions need to be obtained through
numerical modeling using a computer

H



Constitutive Equations for the Classic
Areas of Soil Mechanics

Seepage
v =k, (-u,) oh/ oy

Shear
strength

Volume
change
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Unsaturated Soil Visualization
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Steps | nvolved | mplementing an
Engineered Solution
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Volume-Mass Changes for an
Unsaturated Solil

e Two three-dimensional plots are
required to visualize volume-
mass behavior

e Volume-mass change problems
Involving unsaturated soils are
difficult to solve

H
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Examples of Engineered Structures
Commonly Placed above the Water Table

Light structure

Flux boundary
conditions

o
Roadway

Spread footing
foundation

Unsaturated Solil Retaining
v wall

Saturated Soil




Examples of Segpage Problems
| nvolving Unsaturated Soils

e Structures can suffer distressed from infiltration
of water into an expansive or collapsible soll

e Moisture flux at ground surface influences the
movement of contaminants
e Covers designs involve an analysis of the

transmission and storage of water

e EXxtended infiltration on the surface of an earth
dam may cause the instability

e Predictions related to “Closure” of mining

operation are controlled by the surface flux §



Two-dimensional seepage analysis through an
earthfill dam with a clay core.

Optimized mesh for saturated-




Examples of the Movement of Water
through a Cover and Flow In the
Unsaturated Zone below a Liner

Flux boundary conditions
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Examples of the Control of I nfiltration
through the use of Geomembrances

Anchor for membrance
Rainfall l Surface drain
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Examples of Shear Strength Problems

e Natural slopes often fail following extended
levels of precipitation.

e Loosely compacted fills can collapse and
result in high velocity mass movement upon
wetting

e Cuts or trenches for laying pipelines can
collapse

e Some backfill materials used behind earth
retaining structures can change volume and
shear strength due to the intake of water

e Bearing capacity of shallow footings may

change significantly due to infiltration @



Examples of Volume Change Problems

e Footings and slabs-on-ground should be
simulated using realistic moisture flux
conditions

e Shrinkage problems can occur due to drying
or vegetation

e Collapse of the soll structure can occur as a
result of a decrease In suction

e Predictions of the depth of cracking

e Volume change predictions of compacted
fills and covers needs to be analyzed

H



Concluding Remarks

e Undergraduate engineering students
can be taught the concepts of
unsaturated soil mechanics at the
undergraduate level

e Once the concepts are taught, and
saturated soll systems can be shown
to be a special case, much of the
remaining time can be spent on

solving saturated soil mechanics
problems @)









Observations from the Elliptical
Geotechnical World

e Unsaturated Soils Mechanics:
- applies above the phreatic line
- soll has negative pore-water pressures _
- pore-air pressure may or may not be atmospheric
- stress state variables are:
» net normal stress, (s - u,)
» matric suction (u, - u,)

e Saturated Soils Mechanics:
- applies below the phreatic line
- soll has positive pore-water pressures
- stress state variable is effective stress, (s - u,)




The Need to Quantify “ Real-World”
Moisture Flux Boundary Condition

e Changes In matric suction causes serious
distress to the light engineered structures

e Climate influences the location of the
groundwater table and pore-water
pressures

e Climate “Drives” many geotechnical
engineering problems

H



Long Term Response of the Water
Tableto a Temperate, Humid Climate
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Teaching within the New Paradigm

e A new attitude and mindset must be adopted by the _
geote(;hnlcal engineer when considering unsaturated soll
ehavior. The estimation of unsaturated soll propert
functions is done largely with the assistance of SWCCs.

e |t can be said that geotechnical engineering for
unsaturated soils must operate in a new paradigm of
estimations and approximations

e The new protocols do not nullify the importance of
modeling unsaturated solls; rather, these estimations add
a new and improved understanding of the behavior of
saturated-unsaturated soil systems.




Zones of Unsaturation

e There are three zones of unsaturation:
- occluded air bubbles In the capillary zone
- the zone where both air and water phases are
continuous
- the zone where the water phase become
discontinuous
e There can be continuity or discontinuity of
the air and water phases under various
levels of soil suction and this makes

unsaturated soil mechanics complex

H



Relationship of Seepage to the SWCC

e Coefficient of permeability (or hydraulic

conductivity) of the soll is:

- constant throughout the capillary zone

- decreases with increase In soll suction

- decreases logarithmically between the air

entry value and the residual condition
- various over several orders of magnitude
e Hydraulic flow continues until the

residual suction is reached

e Water flows only where there is water In
the soll!




Relationship of Coefficient of
Permeability and the SWCC

e Coefficient of permeability responds
logarithmically to an arithmetic change In
water content

e AIr Entry Value and Residual Conditions
become the most important parts of a
SWCC

e |t Is possible for a sand to have a lower

coefficient of permeability than a clay @



Shear Strength of an Unsaturated Soill

e Shear strength envelope Is three-dimensional

e Shear strength is linear over a limited soill
suction range

e Shear strength becomes nonlinear over a
wide range of soll suctions

e Shear strength increases in accordance with
the effective angle of internal friction below
the air entry value of the soll

e Shear strength remains constant after

residual condition @



Swelling =f (suction change, overburden)

| llustration
of the Unsaturated Soil
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