

# Babylonia, Mesopotamia, Approx. 1800 BC

## Powers' model

# Ole Mejlhede Jensen

Building Materials Group Technical University of Denmark



666.94 PCA

LABORATORIET FOR BYGNINGSMATERIALER

Research Laboratories of the Portland Cement Association

**BULLETIN 22** 



BY T. C. POWERS and T. L. BROWNYARD

**Studies of Water Vapor Adsorption of Hardened Portland Cement Paste** 

#### 1934-1945

#### MARCH, 194

CHICAGO

Authorized reprint from recoverylated JOCHERAL OF THE AMERICAN CONCRETE INSTITUTE New Center Bidg., Detroit 2, Michigan Oct. 1946 April 1947, Promoting, Vol. 42, 1947

#### PCA bulletin 22

## Experimental content

#### Measurements

- Adsorption isotherms (1st, 2nd, 3rd, ad- & desorption + partial)
- Non-evaporable water
- Strength
- •E-modulus
- Heat of hydration
- Heat of water adsorption
- Freezing dilation
- Drying shrikaage
- Termal deformation
- Permeability

#### Parameters

- •w/c
- •Age
- Cement type
- Curing conditions

## Sorption isotherm experiment



| Salt                                              | RH <sub>20°C</sub> |
|---------------------------------------------------|--------------------|
| LiCI:                                             | 12%                |
| CH₃COOK:                                          | 23%                |
| K <sub>2</sub> CO <sub>3</sub> :                  | 43%                |
| Mg(NO <sub>3</sub> ) <sub>2</sub> :               | 54%                |
| NaNO <sub>3</sub> :                               | 66%                |
| NaCI:                                             | 75%                |
| (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> : | 81%                |
| KCI:                                              | 85%                |
| BaCl <sub>2</sub> :                               | 91%                |
| KNO <sub>3</sub> :                                | 95%                |
| K <sub>2</sub> SO <sub>4</sub> :                  | 98%                |

#### Sorption isotherm



#### Experimental results



#### Phases of water in cement paste



Key figures in Powers' model

Non-evaporable water ~ 0.23 g/g cement reacted

Gel water ~ 0.19 g/g cement reacted

Chemical shrinkage ~ 6.4 ml/100 g cement reacted

## 3-D packing of identical spheres

| Туре                 | Kissing<br>number | %<br>solid volume |
|----------------------|-------------------|-------------------|
| Face-centered cubic  | 12                | 74                |
| Body-centered cubic  | 8                 | 68                |
| Random               | ?                 | 64                |
| Simple cubic         | 6                 | 52                |
| Lowest density rigid | 4                 | 6                 |

## Chemical shrinkage



# Formulas in Powers' Model

$$V_{c.s} = 0.2 \cdot (1-p) \cdot \alpha = \rho_c \cdot 6.4 \cdot 10^{-5} \cdot (1-p) \cdot \alpha$$

$$V_{c.w} = p - 1.3 \cdot (1-p) \cdot \alpha = p - (\rho_c / \rho_w) \cdot (0.19 + 0.23) \cdot (1-p) \cdot \alpha$$

$$V_{g.w} = 0.6 \cdot (1-p) \cdot \alpha = (\rho_c / \rho_w) \cdot 0.19 \cdot (1-p) \cdot \alpha$$

$$V_{g.s} = 1.5 \cdot (1-p) \cdot \alpha = (1-\rho_c \cdot 6.4 \cdot 10^{-5} + (\rho_c / \rho_w) \cdot 0.23) \cdot (1-p) \cdot \alpha$$

$$V_c = (1-p) \cdot (1-\alpha)$$

$$p = \frac{w/c}{w/c + \rho_w / \rho_c} \qquad \rho_w = 1000 \text{ kg/m}^3 \qquad \rho_c = 3150 \text{ kg/m}^3$$

#### Powers' Model



# Degree of hydration α=Σ<sub>i</sub>w<sub>i</sub>·α<sub>i</sub>



# Stability of reaction products C2AH7.5 C3AH1.43 CAH10 C2AH5 C12A7H

# $C_{4}AH_{19} \stackrel{6H}{\underset{=}{\overset{=}{\longrightarrow}}} C_{4}AH_{13} \stackrel{2H}{\underset{=}{\overset{=}{\longrightarrow}}} C_{4}AH_{11} \stackrel{4H}{\underset{=}{\overset{=}{\longrightarrow}}} C_{4}AH_{11} \stackrel{4H}{\underset{=}{\overset{=}{\longrightarrow}}} C_{4}AH_{7}$

 $\begin{array}{c} \mathsf{CAH}_{7} & \mathsf{C}_{3}\mathsf{AH}_{6} & \mathsf{CAH}_{4} \\ \mathsf{C}_{2}\mathsf{AH}_{8} & \mathsf{C}_{4}\mathsf{A}_{3}\mathsf{H}_{3} \end{array}$ 

#### Chemical shrinkage of components



#### Water bound in cement paste



Jensen (2005)

#### The true volumes



Tennis & Jennings (2002)

# Hydration indicators

- Non-evaporable water
- Chemical shrinkage
- •BET specific surface area
- Heat evolution
- Calcium hydroxide content
- Compressive strength



Key figures in Powers' model

Non-evaporable water ~ 0 g/g silica fume reacted

Gel water ~ 0.6 g/g silica fume reacted

Chemical shrinkage ~ 24 ml/100 g silica fume reacted