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Coupled Simulation for Early Age Development Process

Our concern is... not to predict hydration process under ideal conditions
but to predict early age development process
under various temperature, wetting & drying conditions

For that purpose, non-linear interactive phenomena should be taken into account
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Multi-component cement hydration model
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Bulk porosity function of outer product and cluster expansion
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Schematic representation of the pore structure development computation
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Multi-scale modeling of moisture state in cementitious materials
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Time-dependent moisture isotherm
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olidification Model of Hardening Concrete Composite
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Proposed by Maekawa, Rasha, Zhu, and Ishida
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