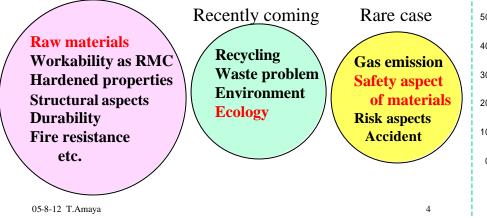
COE Special Lecture

Socio-Environmental Aspects of Construction materials

" Concrete Admixtures"


Date & time	August 12	13:00 ~ 14:30	
Place	Hokkaido University		
Presented by	Dr.T.Amay	a	

05-8-12 T.Amaya

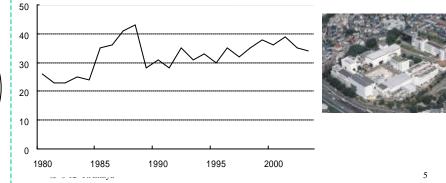
1. Introduction

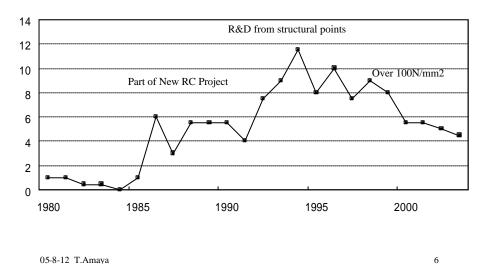
Most of presentations & reports on concrete can be classified into :---

Basically important

Abbreviation

RMC	<u>R</u> eady <u>m</u> ixed <u>c</u> oncrete
AE-WR	<u>Air entraining water reducer</u>
AE-MRWR	<u>Air</u> <u>entraining</u> <u>mid</u> <u>range</u> <u>water</u> <u>reducer</u>
AE-HRWR	<u>A</u> ir <u>entraining high range water reducer</u>
HRWR	<u>High range water reducer</u>
LS	<u>L</u> igno <u>s</u> ulfonate
MS	<u>M</u> elamine <u>s</u> ulfonate
SG	Sodium gluconate
PC	<u>P</u> oly <u>c</u> arboxylate


05-8-12 T.Amaya


1

- Ex. Reports on concrete reported by general contractors
 - -- Big general contractors, i.e. Taisei, Kazima, Obayashi, Shimizu, Takenaka, have published their own R&D reports.

3

-- Total = 4,224 / Reports on concrete = $776 (1980 \sim 2003)$ (18.4%) Fig-1 Number of reports on concrete

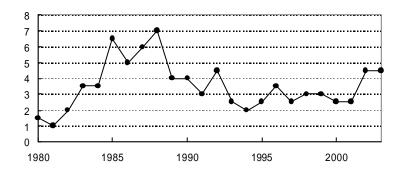


Fig-2 Reports on High Strength & High Fllowing Concrete

Technical fields of reports on concrete Machining, e.g. cutting Seismic strengthening Durability, eg. alkali-silica, freezing-thawing Non-destructive testing Mechanical property as Environment & Resource, e.g. structual component Recycle, Porous concrete Raw Material, e.g.cement, admixture, aggregates Specified additives, e.g. expansion agents, anticorrosion agent, etc. Precast concrete & Prestressed Construction method, e.g. concrete concreting High strength & Specified method, e.g. sprayed concrete, RCD High flowing Concrete

05-8-12 T.Amaya

Fig-3 Number of reports on concrete durability

Studies on concrete-durability have been constantly done to get high quality of concrete.

Ex. Alkali-silica reaction, Cl ion migration, freezing & thawing

05-8-12 T.Amaya	7

2 Cement as main raw materials of concrete

1) History of cement

If concrete is defined to be composite material of lime based binder and aggregates, "Sazare-Ishi" would be the oldest concrete.

Natural concrete formed Before 270 million years

Neolithic era, BC7000, 40 MPa of high strength concrete composed of lime (calcite) and aggregate was used in Israel.

BC300, Rome era, mixture of lime, aggregate and "Pozzolana" were mixed and cured in molds. Such concrete was widely used for construction in Roma.

ForoRomano (BC2 century)

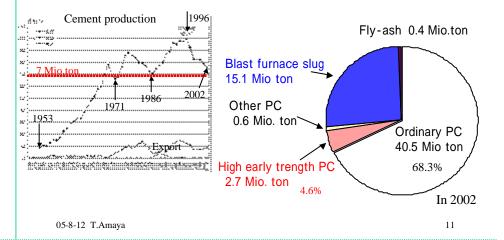
Main cause of hardening of these concrete was carbonation of Ca(OH)₂.

Beginning of 19 century, hydraulic hardening minerals were invented by **burning** the mixture of lime and silica.

In 1824, J.Aspdin invented the basic technology of present Portland Cement.

Its color resembled to the stone in Portland Island.

→ Naming origin


Industrialization of cement prevailed in the world.

Germany in 1850 / America in 1871 / Japan in 1875

2) Production volume

72.4 Mio ton in 2004 Export 10.3 Mio.ton (14%) Portland cement 43.8 Mio.ton 73.9%

Blended cement 15.5 Mio.ton 26.1%

05-8-12 T.Amaya

3 Chemical admixtures

1) Introduction

Before 1960 concrete was mainly produced at job site. Around 1960 ready mixed concrete was produced by about 500 RMC plants.

10

The 1st RMC plant in 1949

Liability of concrete quality increased / Agitator truck delivery Around 1965 almost all concrete was produced by RMC plants.

"Admixtures" are materials used for improving properties of concrete &/or mortar.

Chemical admixture

(Powdery) Admixture Improvement can be done by large amount. Improvement can be done by small amount → JIS A 6204 & Association norms

Improvement items are workability, strength development, etc. Chemical admixture has been used to get workability with decreasing mixing water.

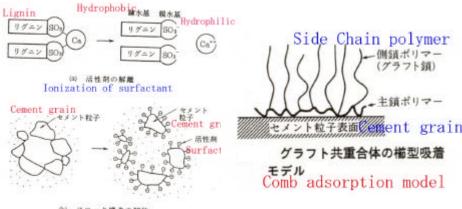
Admixtures	Example of main components	Use of purpose			
Chemical admixtures mainly for water reduction					
1 Air-Entrainer	Nonion type surfactant	Workability / Freezing & thawing			
2 AE Water Reducer	Lignosulfonate / Gluconate				
3 AE-High Range Water Reducer	Polycarboxylate	Workability / Higher strength etc.			
4 AE-Mid range water reducer	Polycarboxylate / Lignosulfonate				
5 High Range Water Reducer	Melamine / Polycarboxylate	Strenth development / Workability			
6 Set retarding water reducer	Gluconate				
7 Set accelerating water reducer	Nitrite / Nitrate / Thiocyanate	Catting time (Llandaning time			
8 Anti-freezing admixture	Nitrite / Nitrate / Thiocyanate	Setting time / Hardening time			
9 Hardening accelerator	Calcium chloride				
10 Superplasticizer	Sulfonated naphthalene	Workability / Job-site addition			
11 Anti-washout admixture	Cellulose base & Acrylic acid	Underwater concrete			
Other chemical admixtures					
12 Shotcrete accelerator	Calcium aluminate	Setting time / Hardening time			
13 Corrosion Inhibitor	Nitrite / Aminoalcohol	Corrosion			
14 Shrinkage reducing admixture	Copolymer of Alkyleneoxido	Surface tension			
Powder type admixture					
15 Shrinkage compensation agent	CSA	Introduce chemical prestress			
16 Fly ash					
17 Blast furnace slug powder		Durability / Long term strength			
18 Silica fume					
19 Calcite powder		Workability / Segregation			
20 Cement polymer emulsion	Emulsion of SBR, EVA & Acryl	Workability / Durability / Adhesion			

2) General properties of chemical admixtures

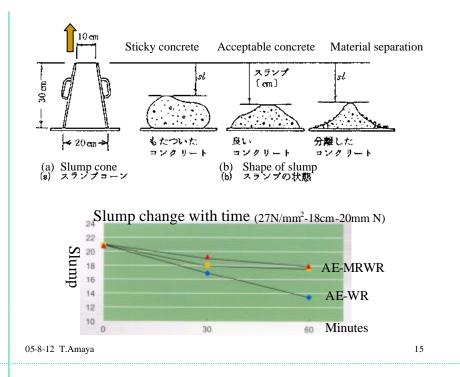
Chemical admixture is one kind of surfactant to get

- -- better workability of RMC
- -- better durability of hardened concrete

Chemical admixture can :--


- -- reduce water in RMC under the same slump (flow)
- -- introduce small air-bubble properly
- -- extend working time of RMC, e.g. slump & flow life

Chemical admixture react cement particles by :--


- -- electrostatic repulsive force
- -- chelate effect

05-8-12 T.Amaya

-- steric hindrance

® フロック構造の解放 Decomposition of cement coagulation

3) History of water reducer

Long history

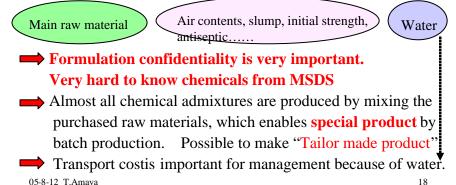
Main water reducing admixtures used in concrete industry

Year	Raw materials		Mechanism of effect
~1920	Lignosulfonate (LS)	By-product of pulp industry	Electrostatic repulsion
1931	Sodium Gluconate (SG)	Fermentation of glucose	Chelate of COO-ion
1965	Sulfonated naphtalene	Copolymerized by formaldehyde	Electrostatic repulsion
1966	Sulfonated melamine	Copolymerized by formaldehyde	Electrostatic repulsion
1982	Modified polycarboxylate	(Meth)acrylate copolymer	Steric hindrance
1985	Amino sulphonated	Aminosulphonate copolymer	Steric hindrance
1990	Comb type polycarboxylate	(Meth)acrylate copolymer	Steric hindrance
1998	Modified polycarboxylate	Polyamido modified aclylate	Steric hindrance

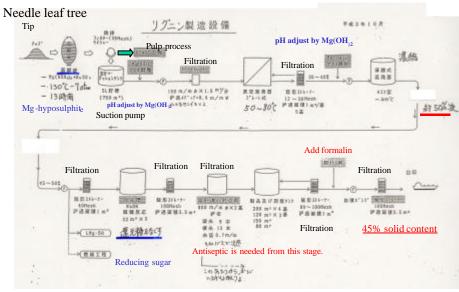
Remark Even LS & SG based admixtures are still under improvement, e.g. additives. Market share of LS based admixture is over 50%. (Meth)acrylate copolymer based admixture is still under development The 1st use of admixture in Japan might be in 1932.

Graft of polymer Cement grain

14


05-8-12 T.Amaya

Features of chemical admixture industry


Company of chemical admixture are "formulators" :--

- -- Almost all raw materials are purchased.
- -- Even main raw materials are purchased, e.g. LS, SG. (Own production is rare case.)

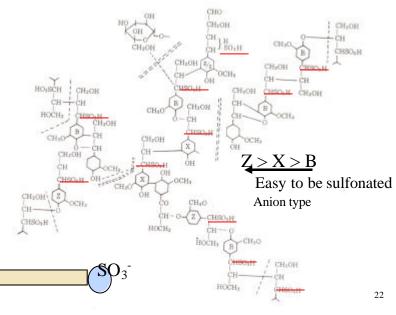
Chemical admixtures are composed of :--

LS production at pulp factory (In case of Mg salt)

4) Water reducers

(1) Lignosulfonate (LS) based Water Reducer

Main use of LS(in 1997 / Solid content base)105 k ton = Admixture (67k t) + Dye disperser (8k t) +.....Ca, Na, Mg base / High molecular electrolyte / Anion typeMolecular weight of LS : ~ 10,000 or more


Long history, i.e. established technology.

Less technical progress now / Mainly Delivery & Marketing But, still mainly used, especially in civil engineering works. In Tokyo area, demands of LS decreases because of aggregate. Cheapest raw material as admixture raw materials Cement dispersion is done by electrostatic repulsion. Basically sugar is contained in LS raw material, which is effective for retardation.

05-8-12 T.Amaya

Structure of LS is complicated, because lignin is natural product.

20

Example of formulation of LS based admixture

a Full season type

Mg-LS (45% solid content)	98.2 %
TEA (80% solution)	1.6 %
Tri-butyl phosphate	0.15 %
Formalin (37% solution)	$0 \sim 0.4$ % (Seasonal adjustment)
Antiseptic*	$0 \sim 0.035$ % (Seasonal adjustment)
G (

b Summer type

D	Summer type		
	Ca-LS (48% solid content)	98.5 % (High suga	r content)
	TEA (80% solution)	0.8 %	
	Tri-butyl phosphate	0.35 %	
	Formalin (37% solution)	$0 \sim 0.5$ % (Seasonal ad	justment)
	Antiseptic*	$0 \sim 0.05\%$ (Seasonal a	djustment)
*	Antiseptic must be changed every	year because of change of Ge	erm & bacillus.
	05-8-12 T.Amaya		23

2) Sodium Gluconate (SG) based Water Reducer

SG is produced by	fermentation of gluc	cose.	
Н Н	ОН Н		
$HOH_2C - C - C -$	- C – C - COONa		
OH OH	I Н ОН	MW = 431	
Reaction with cem	ent particle		
Water Reduction :	Electrostatic force w	with cement grain like LS	5
Retardation :	Strong chelate prope	erty above pH >12	
Gluconate ion re	eacts with Ca2+ initia	ally Ca ²⁺ ion	
released, and for	rms "protective layer"	" Chelate	Ľ.
which causes re	etardation.	2	
Advantage Hot	season concreting	\sim	
Sup	erior surface finish		
		25	

Formaldehyde calculation

Base	Cement	300 kg/m^3			
	LS base AE-WR	Cement x 0.5 %			
	(Contain 0.3 % of 37 % formalin)			
300 kg/m ³	x 0.5% x 0.3% x 37% =	1.7 g/m ³ of formaldehyde			
is cont	ained in 1m ³ of read	dy mixed concrete.			
If conc	rete is applied to th	he floor, $10m^2 x \ 10cm^{H} (1m^3)$			
and if	and if 1% of formaldehyde is emitted from concrete,				
🗷 17mg of formaldehyde					
If roon	n height is 1.7m 🗷	1,000 µ g/m ³			
Ventil	ation before use	·····			
Guide	eline : 100 μ g/m ³ ···· 0.0	08ppm			
05-8-12 T.Am	aya				

Example of formulation of SG based Waterreducing and retarding admixture

31.0 %

0.02 %

0.2 %

balance

a Basic formulation

Sodium gluconate	31.0 %
Formalin (37% solution)	1.0 %
Water	balance

Without formalin
 Sodium gluconate
 Antiseptic material
 Coloring material

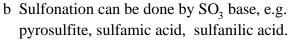
Exposed concrete

05-8-12 T.Amaya

Water

3) Melamine sulfonates & formaldehyde condensation polymer (MS) based High Range Water Reducer (HRWR)

MS was developed as raw material of superplasticizing HRWR


in Germany in 1960.

At present, mainly used in precast field because of good surface finish, water reduction. Production of MS

a For melamine-formaldehyde copolymer, mole ratio of Melamine : Formaldehyde = 1 : 3

(from operation 1 : 3.3) ulfonation can be done by SO₂ ba

GÜTESIEGEI

30

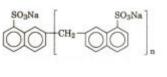
Formaldehyde problem happened in Switzerland

- a In 1990 formaldehyde problem was pointed out by Swiss government with data, if concrete, mixed with melamine or naphthalene based admixture, is wasted at the source of water-supply.
- b Swiss Admixture Association (FSHBZ) checked and re-tested the contents of complaint.
- c FSHBZ submitted the opposition report with the proposal.
- d Proposal says all criteria, covered from production to waste, are checked by 3rd party.
 FSHBZ label is allowed if all check points are

approved by auditor.

e This is self-control norm.

 \implies There is limitation. Ex. Formalin content < 0.5%

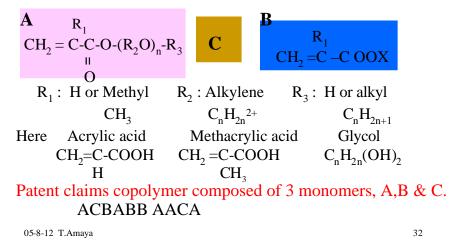

Recent tendency is moving to PC based admixture, because :--

- -- Higher water reduction / Better workability
- -- No eye & skin irritation

Formaldehyde (FA) calculation

Cement 400 kg/m^3 MS base HRWRCement x 1.0 % (Remain 1% of free FA) $400 \text{ kg/m}^3 \text{ x } 1\% \text{ x } 1\% = 40 \text{ g/m}^3$ of FA remains in concrete.If concrete is steam-cured, almost all FA might be released.But if not, FA may be released during long period.

Info. Naphtalenesulfonate was develope by Dr.Hattori in 1965.


29

```
05-8-12 T.Amaya
```

- 4) Polycarboxylic acid (PA) polymer based admixture. Background of development
- a In 1986 JASS 5 requires water content to be less than 185kg/m³.
 "New RC Project" headed by MLIT started for high strength concrete, 60N/mm². (MLIT = Ministry of Land Infrastructure & Transport)
- b Although naphthalene & melamine based AE-HRWRs give high water reduction and good workability, market required much better admixtures to meet New RC Projects, i.e.future requirement.
- c To meet the requirements, many chemicals are tested, e.g. polycarboxylate ether, maleic acid co-polymer.
- d In 1984 Nippon Shokubai invented the polymer for admixture. Epoch-making in chemical admixture technology 05-8-12 T.Amaya 31

Base technology of Nihon Shokubai

- A Monomer of Polyalkylene glycol ester and (meth)acrylic acid
- B (Meth)acrylate monomer $(90 \sim 5 \text{ wt\%})$ $10 \sim 95 \text{ wt\%}$
- C Monomer able to copolymerize with A & B $(0 \sim 50 \text{ wt\%})$

Example of formulation (wt.%)

Product name	80N	80S	-
Polymer-600	37.1	22.3	
Polymer-700		29.7	Polymer combination
Ethylenediamine	1.2	1.2	
TEA	0.8	0.8	To get longer workability time
Coloring	0.3	0.3	
Water	59.4	44.6	
AE agent	0.2	0.2	
AF agent	1.0	0.9	

- a Basically polymer's function as admixture is done
 by adsorption of carboxylic ion to hydrated cement grain
 by hindering cement grain coagulation by graft (side chain)
- b AE-HRWRs would be formulated by formulating 2-3 kinds of polymers to meet requirements, e.g. SP-80N & SP-80S.
- c These polymers showed the big possibility of high strength & high flowing concrete as shown later.
- d Almost all polymer are produced by a few chemical companies, because polymerization process needs know-how of high molecular synthesis including safety items.
- e This kind of polymer is still under development and their details are **closed**, which causes strong confidentiality even to MSDS.

High flowing & high strength concrete

sir content < 1 %

¥1

16.9

¥ 2

cm/sec

17.0

10.1

9.8

14.0

12.1

V 1, 2, 3 : L - Flow Meter

¥3

14.6

9.5

8.7

-

11.2

05-8-12 T.Amaya

Concrete Mix Proportion

Test Result : 3.2 % SM 1200 N

Slump Flow

66 x 68

66 x 65.5

65 x 64.5

65 x 65

Concrete Mixing

Time

min

0

30

60

90

W/B: 25%, S/A: 453%

85 % Moderate Heat Cement (Mitaubishi) 15 % undersafied Silcatume (ELCEM U 904) kg Water/m³, 560 kg Binder/m³ hed and pit sand, crashed aggregate were produced in placed in a lony

Flow Speed

50 cm

4

4.5

5

4

4

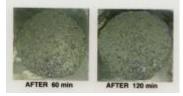
Double Mixing Mathode Total Mixing Time : 70 sec

C. T.

90

30

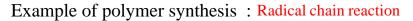
29 12.7

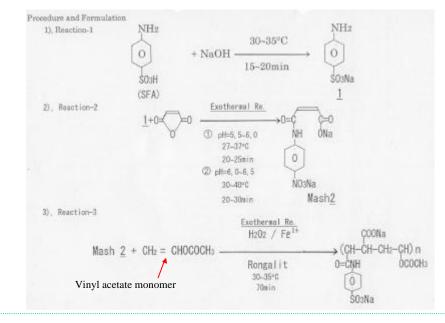

28 12.5

28 13.0

27.5 16.2

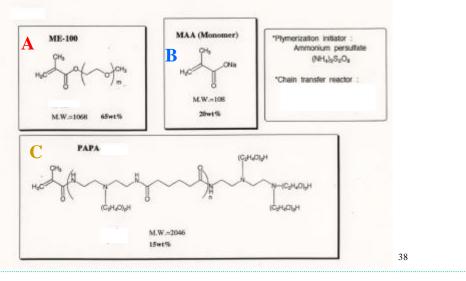
33

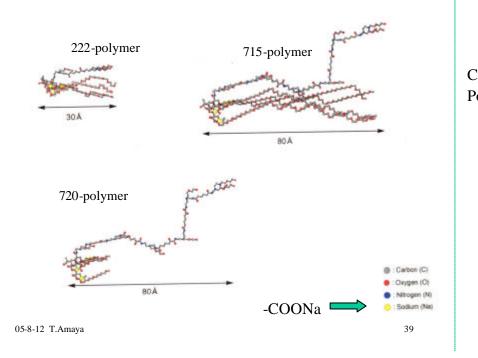

AFTER MIXING

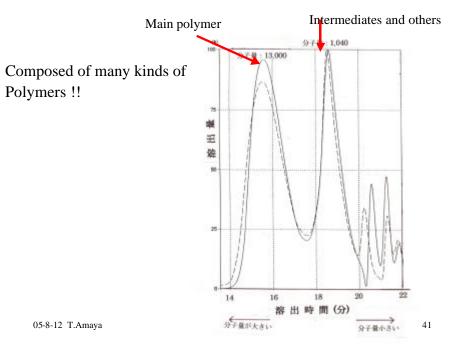


Compressive Strength :

at	ter con	crete mixing	after 90 min	cores
1 week	54	N/mm ²	54	
4 weeks		88	92	75







Example of polymer synthesis --- Modified Nihon Shokubai

3 intermediates co-polymerize, in the case of 715Mpolymer

5) Mid range AE-Water Reducers

AE-WR ➡ Mid range AE-WR➡AE-HRWR					
Water reductio			Over 18%	Bigger	
Slump keeping				Better	
Price	~ 50 ¥/kg	65~80 ¥/kg	> 160	¥/kg	
Strength level	$< 25 \ \text{N/mm}^2$	2030 N/mm^2	> 30	N/mm ²	

On the point of durability JASS 5 requires water content must be less than 185 kg/m³, preferably <180 kg/m³

- --- Very hard to attain using present AE-WR with recent low quality of sand, especially west part of Tokyo & Oosaka area.
- --- Especially 20-30 N/mm² concrete
- --- Water content is checked at job site.

Then requirements are just between AE-WR & AE-HRWR regarding water reduction, slump keeping & price.

6) High range water reducer (HRWR)

HRWR has been mainly used for **PCa** & **PC**, not for RMC factory. Main requirements of PCa & PC are :--

- -- Water reduction & easy to cast
- -- Good surface finish after curing
- -- Slump life is not required, i.e. half or less of RMC plant use.

Main raw materials of HRWR are :--

- -- Melamine sulfonate & formaldehyde condensation polymer (MS)
- -- Naphthalene sulfonate & formaldehyde condensation polymer (NS)
- Polycarboxylate (PA) polymer based admixture has gradually been used, because of better water reduction.
- -- Utilize the technology of PC based admixture

42

Idea of formulation

a Based on AE-HRWR

1

05-8-12

Dilution \Longrightarrow Quality of AE-HRWR is possible by excess dosage. Since 1996 this type has been major products.

Ex)	Existing AE-HRWR	55.0 wt%
	Existing LS based AE-WR	5.0 wt%
	Sodium gluconate	4.5 wt%
	* Water	Balance

Mix with cheaper & compatible material

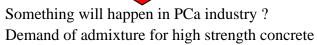
- b Use of cheaper & lower quality of PC polymers, which are not acceptable as AE-HRWR.
- c Add PC polymers into AE-WR

T.Amaya

44

Site PC ---- New trend at job sites

Beam, floor slab, balcony, etc. are produced at job site to reduce construction period, etc.



Bar arrangement

Job site of MM Towers

Concrete High strength concrete 60N/mm² Demold next day and lifting up by crane

PCa mold preparation 05-8-12 Dr.T.Amaya

46

7) Hardening accelerator

Ca- nitrite13.5HydraticMethyldiethanolamine6.5Anti-freeWaterBalance?Water re	After setting of cement, stren Hardening accelerator is used Getting initial strength duri Getting efficiency of mold- Getting initial strength for Chemicals used for hardening little, followings are famous Ca-nitrite, Ca-thiocyanate, CaCl ₂ was used for this purpor Example of formulation (wt. Lactic acid	for ing concreting in cold seas -cycle at precast factory AE-WRs & AE-HRWRs g accelerator effects on set raw materials: Ca-formate, TEA ose, but stopped. %)		8) Anti-fr When cor developm Use of proper Technical Accelo Lower Generally
Water Balance? Water re	Lactic acid Ca- nitrite	5.0 13.5		Hydratio
		Balance?	47	Water re 05-8-12 T.Ama

Example of formulation (wt.	%)
Ca- thiocyanate	18.0
Na- thiosulfate	15.0
Tri-ethanol amine (80% soln)	2.0
Ca-LS (40% soln)	32.5
Water	Balance

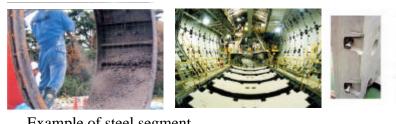
Caution to be taken

Don't use together thiocyanate type and nitrite type Nitrite is the cancer suspicious chemical in EU. In summer nitrite & nitrate dissolved in capillary water may cause NOx gas emission problem.

8) Anti-freezing admixture

development is essential Use of high early Port	d in intense cold season, initial strength factor to avoid damage of freezing. tland cement, &/or anti-freezing admixture, l concrete freezing, etc.
	reezing admixture are : al hydration of cement pint
Generally it is formulated	d by combining the materials
Hydration-accelerator	Ca-(Na-) nitrite, nitrate, thiocyanate
	Tri-ethanol amine
Anti-freezing material	Ethylene glycol
Water reducer	Lignosulfonate, Melaminesulfonate
05-8-12 T.Amaya	48

9) Quick setting admixture


Quick setting admixture is used to get very short setting time and very fast strength development.

Ex. In case of JSCE's norm on NATM Initial setting < 5 min Final setting < 15 min 12 hours strength > 1.0 N/mm²

Before 1980, sodium aluminate was used, but stopped because of alkali problem.

Then safety and ecological concerns have been dominant in the sprayed concrete accelerator market. As non-alkali type, Ca-aluminate, Ca-sulfoaluminate and aluminum sulfate are gradually used. Non-alkali quick setting admixture is used for other applications, e.g. steel segment, bolt box of concrete segment, using shotcrete technology, e.g. mortar mixing, spraying machine.

Example of steel segment		
Cement	1000 kg	W/C = 46.7 %
Acryl emulsion (44% solid)	160 kg	Polymer/C = 7%
Water	380 kg	
Crashed glass sand	500 kg	
Admixture $(45\% \text{ Al}_2(\text{SO}_4)_3)$	60 kg	
Spray = $1 \text{ m}^3/\text{h}$ \implies No du	st / Easy to trowel	/ Good adhesion
		52

From norms on anti-washout admixture

Guideline of underwater concrete is described in JSCE's norm.

Japan Society of Civil Engineers

10.000 V V X

55

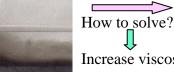
Mix proportion of u	under-water concrete
---------------------	----------------------

Gmax	Flow	W/C	S/a	Water	Cement	Sand	Gravel	Viscous	HRWR
mm	cm	%	%			Kg/m ³			C x %
25	50 ± 3	55	40	220	400	635	960	2.5	1.5

Viscous material is cellulose derivatives.

Melamine based high range water reducer(HRWR) Separation factor in water, i.e. amount of suspended

substance, is 12 mg/L. (Norm : less than 50 mg/L) Flowing concrete / Self-leveling / Much less turbidity


Less strength drop ($_{water}$ / $_{air}$ =90%)

05-8-12 T.Amava

10) Anti-washout admixture for underwater concrete

In case of underwater concreting, e.g. revetment, pier, segregation of cement-paste and aggregate must be avoided, even though tremie-tube is used.

Increase viscosity

Turbidity by suspended particles Self leveling How to minimize environmental impact of cement washout? Viscous admixture Main component ; Water soluble polymer, such as Cellulose base & Acrylic acid base Other components ;

05-8-12 T.Amaya

Anti foam agent, (AE)Water reducer, etc. 53

11) Corrosion inhibitor admixture

Formulated to protect embedded reinforcing steel from corrosion, and to provide an effective means for extending the service life of concrete structures.

Basically surface of steel in high alkali is protected from corrosion because of being covered by hydrophobic thin layer, $20 \sim 60$, of

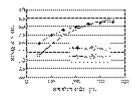
 $-Fe_2O_2$.

By carbonation &/or chloride ion migration in concrete, steel corrosion starts, and then cracks are formed. (Volume of Fe_2O_3 is 1.5 times larger than that of steel.) Once crack forms, corrosion speed is enhanced.

05-8-12 T.Amava

Two types of corrosion inhibitor

a Anode action type : NO- ion / JIS A 6205
 Depresses oxidation of steel & forms Fe₂O₃ inhibitive film
 Major product in Japan
 Toxicity : Nitrite salts are listed toxicity class 2 in CH.

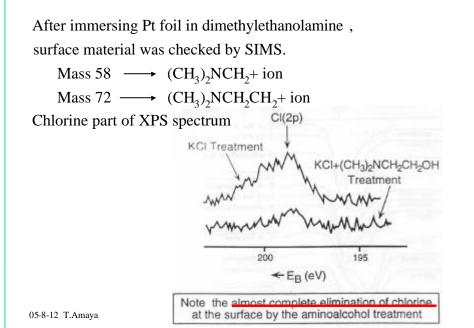

- b Dual action type : Amino-alcohol (AMA)Film forming, protecting both cathode& anode partsNon-hazardous
- c Mechanism of anti-corrosion of AMA
 AMA is absorbed on steel in a layer of about 20 thickness
 Hydroxide at steel surface are replaced by AMA
 AMA can displace Cl⁻ ions from steel surface

05-8-12	T.Amaya
---------	---------

58

12) Surface retarding agent

Using properties of **retardation**, SG is used for placing joint admixture, i.e. being formulated to retard the set of surface mortars in concrete to enable the aggregate to be exposed.



Exposed aggregates

Example of formulation of placing joint admixture

Sodium gluconate	11.0 %
Antiseptic material	0.07 %
Coloring material	0.10 %
Water	balance

4 Conclusion

- 1) Concrete is essential material in our life.
 - If properly applied, long & high quality service can be expected.

Exposed concrete in

Charles de Gaulle Airport

Proper mix-proportion & dense filling Otaru North Break Water

- 2) Cement industry plays a role of **disposal facility** in our society as raw material, fuel & powder admixture.
- 3) Chemical admixture can improve concrete quality by its performances, e.g. water reduction.
- 4) Message to young researchers

Doesn't Chemical admixture have disadvantage ? 05-8-12 T.Amaya

