IMPORTANCE OF AUTOGENOUS SHRINKAGE TO SERVICEABILITY PERFORMANCE OF RC FLEXURAL MEMBERS AND IMPROVEMENT BY USING LOW-SHRINKAGE HSC

> Makoto Tanimura Taiheiyo Cement Corporation, Japan Ryoichi Sato Hiroshima University, Japan

COE Workshop on Material Science in 21st Century for the Construction Industry - Durability, Repair and Recycling of Concrete Structures -, Sapporo, Japan, Aug. 2005

<u>Necessity of low-shrinkage HSC</u>

<u>Objectives</u>

However, ✓ Insufficient investigations on the effect of AS and ✓ Effectiveness of low-shrinkage HSC (LS-HSC) from the viewpoint of structural performance of RC members

Therefore

 Evaluation of flexural serviceability performances of RC beams made with high-AS and LS-HSC
 A general method for calculating crack width and deformation of RC flexural beams, considering the effect of shrinkage/expansion before loading

Mixture investigated										
				∻ <u>Low</u>	<u> </u>					
Con	NC	NE	NS	NES	LC	LE	LS	LES		
Cem	Ordinary Portland				Belite-rich low heat Portland					
EX	-	Add.	-	Add.	-	Add.	-	Add.		
SRA	-	-	Add.	Add.	_	_	Add.	Add.		

W/(C+EX); 0.3, W; 175 kg/m³
 EX content; 40 kg/m³
 SRA content; 6 kg/m³
 Targeted concrete strength; 70 N/mm² at 28 days

> Before loading Steel strain - Restrained stress on bottom fiber >Under loading - Cracking load - Crack width; Contact-type strain gauge

- Deflection; Displacement transducer

<u> Beam for free deformation and creep tests</u>

Test setup for sustaining load

150 N/mm² and **300** N/mm² of reinforcement stress at fully cracked section.

<u>Strain properties</u>

Thermal expansion of concrete; assumed to be 10 x 10⁻⁶/°C

А

9

➤Using LPC, EX, SRA, or their combinations is effective for controlling not only AS but also restrained-AS stress.

Effectiveness of EX on eliminating restrained-AS stress 10

Using expansive additives achieve a significant efficiency for eliminating restrained-AS stress at early ages.

Shrinkage properties under drying condition

Combined use of EX and SRA; very effective for reducing shrinkage/resultant induced stress from early-ages to long-term ages

Properties of RC beams just before loading

Туре	Age at loaded	Strain of tension bar	Stress of bottom fiber	Free strain of concrete
NC1	63	-187	1.27	-397
NCE2	65	-16	0.11	-174
NCS	57	-147	1.00	-313
NCE2S	70	4	-0.03	-175
NC2-150	31	-138	0.82	-255
NC2-300	33	-130	0.77	-262
NCE1S-150	31	81	-0.48	30
NCE1S-300	33	83	-0.49	28
LC	70	-24	0.16	-12
LCE2	64	214	-1.45	311
LCS	64	8	-0.06	5
LCE2S	61	224	-1.52	383

Strain of tension reinforcingbar: -190 ~ +220 x10⁻⁶

Autogenous shrinkage/ expansion strain :-400 ~ +400 x10⁻⁶

Restrained stress at extreme bottom fiber: -1.5 ~ 1.3 N/mm²

Flexural cracking moment

AS of HSC affects the decrease in Mcr significantly.
 LS-HSCs markedly improve Mcr, even though the difference in calculated Mcr among mixtures is considered.

Maximum crack width and crack spacing

Reinforcement stress at fully cracked section =200 N/mm²

LS-HSCs improve cracking performance significantly.
--Decrease in crack width, while increase in crack spacing!!

Reinforcement stress at fully cracked section =200 N/mm²

> AS affect the increase in deformation, while LS-HSCs improve deformation behavior !!

<u>Time-dependent serviceability performance</u>

Time-dependent crack width/curvature; marked improvement by LS-HSC
 Effectiveness of LS-HSC; significant when common load level

<u>Summary of experimental results</u>

Solution Content of the second stress of the second

Serviceability performances of RC flexural beams.

LS-HSCs markedly improve its serviceability performances; the combined use of Belite-rich low heat Portland cement and expansive additive is particularly effective.

Basic concept of strain change in tension

reinforcement on crack width by shrinkage/expansion

: Stress in concrete at the depth of tension reinforcement is zero

: Strain in tension reinforcement just before loading

This concept was incorporated into JSCE DESIGN CODE-2002

Improved prediction accuracy

Necessity of new concept for evaluating deformation 21 of HSC with high-AS, less-AS and expansion

Schematic diagram of M-curvature relationship for the case where AS and Expansion is dominant!!

Basic concept of the effect of restrained-shrinkage/ 22 <u>expansion stress on curvature</u>

Restrained-shrinkage stress contribute to increasing curvature
 Restrained-expansion stress contribute to decreasing curvature

Modification of JSCE Code for effective flexural stiffness²³

 \diamond New concept

$$E_{e}I_{e} = \left(\frac{M_{cr}}{M_{d}}\right)^{4} \frac{E_{e}I_{g}}{1 - \frac{\Delta M_{csg}}{M_{d}}} + \left\{1 - \left(\frac{M_{cr}}{M_{d}}\right)^{4}\right\} \underbrace{E_{e}I_{cr}}{1 - \frac{\Delta M_{cscr}}{M_{d}}} = E_{e}I_{cr} = M_{d} / \Psi_{a}$$

$$E_{e}I_{cr} = M_{d} / \Psi_{a}$$

$$\Psi_{a} = -\Psi_{sh} + \left(\frac{\sigma_{s}}{E_{s}} - \frac{\sigma_{c}}{E_{e}}\right) / d$$

- $E_e I_g$: flexural stiffness at full section
- E_eI_{cr} : flexural stiffness at cracked section considering the restrained stress
- E_e : effective Young's modulus, $E_e = E_{ct} / (1 + \varphi)$
- ΔM_{csg} , ΔM_{cscr} : fictitious bending moment caused by shrinkage and restraint of the reinforcement bars at full/cracked section

Ilexural stiffness at cracked section is modified by considering the increased/decreased curvature due to the release of shrinkage/ expansion-induced stress.

Validity of the proposed equation

Improved prediction accuracy by proposed concept

<u>Validity of proposed equation for evaluating time-</u> <u>dependent curvature</u>

>Improved prediction accuracy

Summary of general evaluation method

Prediction of instantaneous/time-dependent flexural crack widths of high-shrinkage/low-shrinkage HSC; improved accuracy by proposed concept.

Prediction of instantaneous/time-dependent deformation of high-shrinkage/low-shrinkage HSC; improved accuracy by proposed equation. (in the future, it is expected to adopt in design code)

Thank you !!

