# **Eco-Cement and Eco-Concrete** Environmentally Compatible Cement and Concrete Technology

# Shunsuke HANEHARA Iwate University

COE Workshop on "Material Science in 21st Century for the Construction Industry - Durability, Repair and Recycling of Concrete Structures"

### Eco-cement and Eco-concrete technology

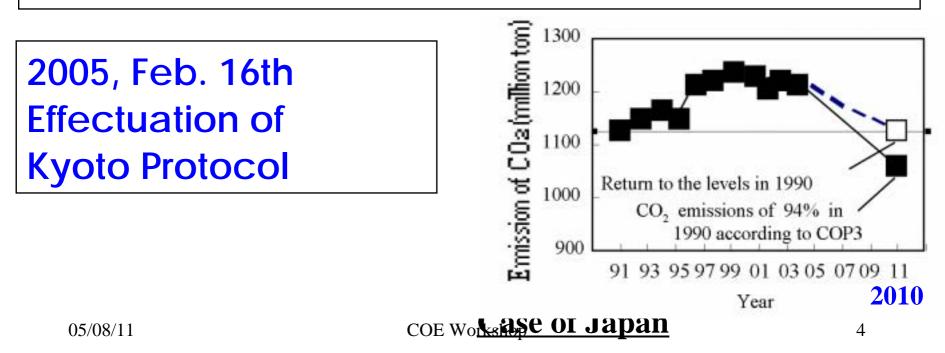
The cement industry has the potential to make the best use of waste and to purify the environment. This eco-cement and concrete technology is divided into four specific objectives.

- i) Utilizing waste materials as alternative fuel and raw materials (AFR). An example includes "eco-cement" developed by Taiheiyo Cement Corporation in Japan.
- ii) Purifying the environment with **concrete photocatalyst road**, whereby **TiO**<sub>2</sub> decomposes NOx with ultraviolet rays.
- iii) Encouraging natural flora and fauna, with **bio-sowed concrete** technology.
- iv) Reducing the **heat island** phenomenon in urban areas through **sowed concrete technology**.

05/08/11

# 2. Manufacturing Technology for Using Waste Material

# 2.1 Waste Material (AFR) Use in Cement Industry


AFR: <u>A</u>lternative <u>F</u>uels and <u>R</u>aw Materials

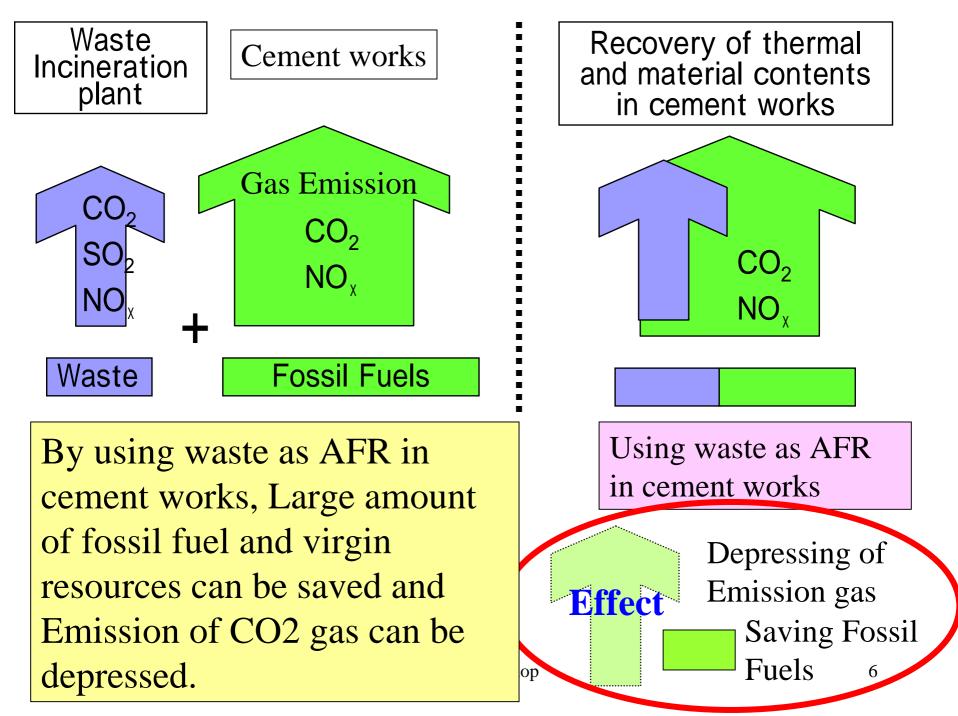
What is the *political* CO<sub>2</sub> issue?

### **1992: Rio Earth summit:**

Stabilize greenhouse gas concentrations

**1997: Kyoto Protocol(COP3)**: Reduce total greenhouse gas emissions of developed world by 2008 ~ 2012 = 1990 - 5.2 %

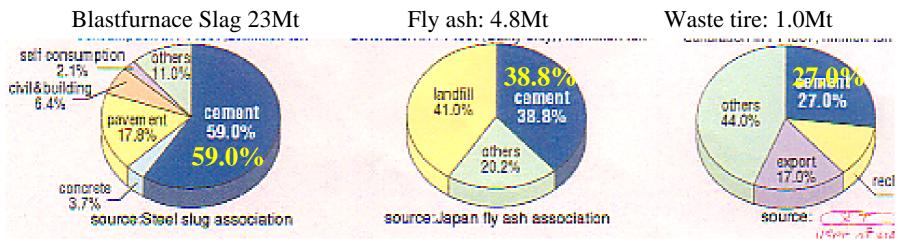



### **Impact of CO2 issue for Cement Industries**

% fuel CO2 by sector cement in cl process CO2 **40** 20 17 15 5 Energy Cement Transport Production Residential

World cement average: 0.8 to 1.0 ton CO2/t-cement

Global cement industry: 5% of global CO2 emission


Cement industry = largest source of manufacturing industry



# Feature of cement industry

- fit for zero emission system.
  - composition: mixture of CaO, SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe<sub>2</sub>O<sub>3</sub>, These elements are commonly familiar on the earth.
     Most industries refine the mono-component as steel making,
  - Two step burning at 1000 and 1500  $^{\circ}$  C
  - Cement process applies to final treatment of combustible wastes of oil and plastics.
  - many kinds of industrial waste are possible to utilize as a cement raw material, since they are rich in superscription of 4 components.

### Industrial waste used in Japanese Cement industry (1997)



|                                   |       | Application |       | Amount                                                                                               |
|-----------------------------------|-------|-------------|-------|------------------------------------------------------------------------------------------------------|
| Item                              | Raw M | Blend M     | Fuels | (1000ton)<br>12,684<br>3,517<br>2524<br>1,772<br>1,671<br>1,207<br>1,189<br>543<br>542<br>258<br>150 |
| Blast furnace slag<br>Coal ashes  |       |             |       | 12.684                                                                                               |
| Coal ashes                        |       |             |       | 3,517                                                                                                |
| Gypsum by-product<br>Coal tailing |       |             |       | 2524                                                                                                 |
| Coal taifing                      |       |             |       | 1,772                                                                                                |
| Nonferrous slag                   |       |             |       | 1,671                                                                                                |
| Steel manufacture slag            |       |             |       | 1,207                                                                                                |
| Dirt, Sludge                      |       |             |       | 1,189                                                                                                |
| Ash dust, dust                    |       |             |       | 543                                                                                                  |
| Casting sand<br>Used tire         |       |             |       | 542                                                                                                  |
| Used tire                         |       |             |       | 258                                                                                                  |
| Recycled oil<br>Waste oil         |       |             |       | 139                                                                                                  |
| Waste oil                         |       |             |       | 117                                                                                                  |
| Waste clay<br>Construction debris |       |             |       | 76                                                                                                   |
| Construction debris               |       |             |       | 49<br>292                                                                                            |
| Others                            |       |             |       | 292                                                                                                  |
| Total                             |       |             |       | 26,600                                                                                               |

#### **26.6**Million ton is 8% of summation of all of industrial and non-industrial waste.

# 2.2 Eco-cement

Eco-cement is a new type of Portland cement being developed not only to solve the municipal and industrial waste problem caused by limited availability of landfill sites, but also to contribute to the protection of the environment by providing a complete recycling system of wastes that would otherwise be dumped.

### The targets in the development of eco-cement

- ✓ As much as 50% of the raw materials have to be replaced by incinerator ash or other waste materials such as sewage sludge.
- $\checkmark$  The cement has to have general wide use.
- ✓ Both the manufacturing process and the products have to be environmently-friendly.
- ✓ The entire process has to be a complete recycling system.

### Key Technology in Eco-cement

Incinerator ash generally also contains a high concentration of chlorides and a small amount of heavy metals. Therefore, decomposition, removal, or enclosure of these substances is the key to the success of this project.

The metals vaporize in the form of chlorides through the burning process and are caught as kiln dust in the bag filter. The heavy metals are then extracted from the dust through the metal recovery process and delivered to a smelter for refining. This makes the eco-cement process a complete recycling system for municipal and industrial wastes.

### Raw mix and incinerator ash

#### Incinerator ash composition

| Major components (%)                                                                                                |  |  |  |  |  |  |    |  |     |
|---------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|----|--|-----|
| ig.loss $SiO_2$ $Al_2O_3$ $Fe_2O_3$ $CaO$ $MgO$ $SO_3$ $Na_2O$ $K_2O$ $Cl$                                          |  |  |  |  |  |  | Cl |  |     |
| 11.0         22.9         19.7         5.6         30.4         4.8         2.1         3.3         2.6         8.5 |  |  |  |  |  |  |    |  | 8.5 |

| Minor components (%, ppm) |          |     |     |         |    |    |     |     |     |    |     |
|---------------------------|----------|-----|-----|---------|----|----|-----|-----|-----|----|-----|
| TiO <sub>2</sub>          | $P_2O_5$ | ZnO | CuO | Cr      | As | Cd | Hg  | Pb  | F   | CN | PCB |
| 0.9                       | 1.8      | 0.6 | 0.6 | 438 ppm | 55 | 11 | 3.5 | 311 | 120 | ND | ND  |

#### Typical Mix Design of Raw Meal (%)

| Type of cement          | Incinerator ash | Limestone | Clay | Ferro M. | Alumina |
|-------------------------|-----------------|-----------|------|----------|---------|
| Portland cement type    | 58.2            | 40        | 1.3  | 0.5      | _       |
| Rapid-hardening<br>type | 52.2            | 45        | 2.2  | 0.3      | 0.3     |

### Composition of eco-cement

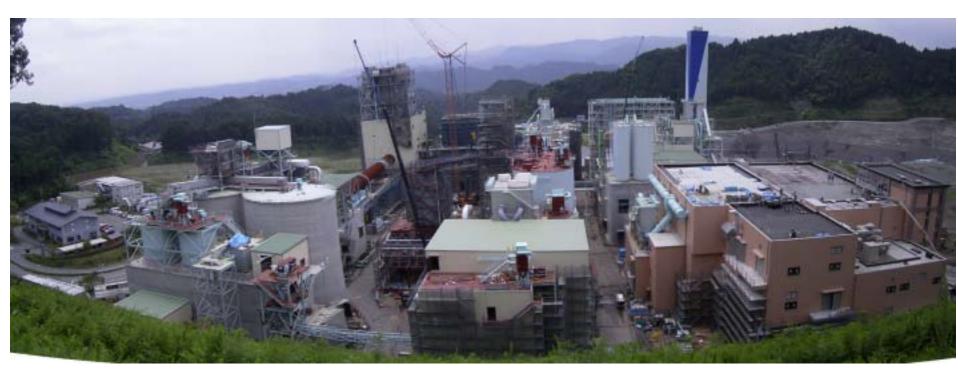
|                      |         | Chemical composition (%) |           |                                |      |     |                 |                   |                  |      |  |
|----------------------|---------|--------------------------|-----------|--------------------------------|------|-----|-----------------|-------------------|------------------|------|--|
| Type of cement       | ig.loss | $SiO_2$                  | $Al_2O_3$ | Fe <sub>2</sub> O <sub>3</sub> | CaO  | MgO | SO <sub>3</sub> | Na <sub>2</sub> O | K <sub>2</sub> O | C1   |  |
| Portland cement type | 0.6     | 19.1                     | 8.1       | 4.5                            | 62.7 | 1.4 | 3.7             | 0.05              | 0.00             | 0.04 |  |
| Rapid-hardening type | 0.8     | 15.5                     | 11.0      | 1.9                            | 58.5 | 1.4 | 8.8             | 0.60              | 0.00             | 1.00 |  |
| NPC                  | 0.6     | 22.2                     | 5.1       | 3.0                            | 63.8 | 1.4 | 2.0             | 0.30              | 0.20             | 0.00 |  |

|                      | Mineral composition (%) |                  |                  |                          |                   |                   |  |
|----------------------|-------------------------|------------------|------------------|--------------------------|-------------------|-------------------|--|
| Type of cement       | C <sub>3</sub> S        | C <sub>2</sub> S | C <sub>3</sub> A | $C_{11}A_7 \cdot CaCl_2$ | C <sub>4</sub> AF | CaSO <sub>4</sub> |  |
| Portland cement type | 49                      | 12               | 14               | _                        | 13                | 7.7               |  |
| Rapid-hardening type | 44                      | 11               | _                | 17                       | 8                 | 15.0              |  |
| NPC                  | 56                      | 19               | 9                | _                        | 9                 | 3.4               |  |

## Property of eco-cement

|                      | Specific | Specific     | Setting    | g time |
|----------------------|----------|--------------|------------|--------|
|                      | gravity  | surface area | (hr - min) |        |
| Type of cement       |          | $(cm^2/g)$   | Initial    | Final  |
| Portland cement type | 3.19     | 4500         | 2-0        | 4-30   |
| Rapid-hardening type | 3.13     | 4600         | 0-9        | 0-13   |
| NPC                  | 3.17     | 3220         | 2-22       | 3-20   |

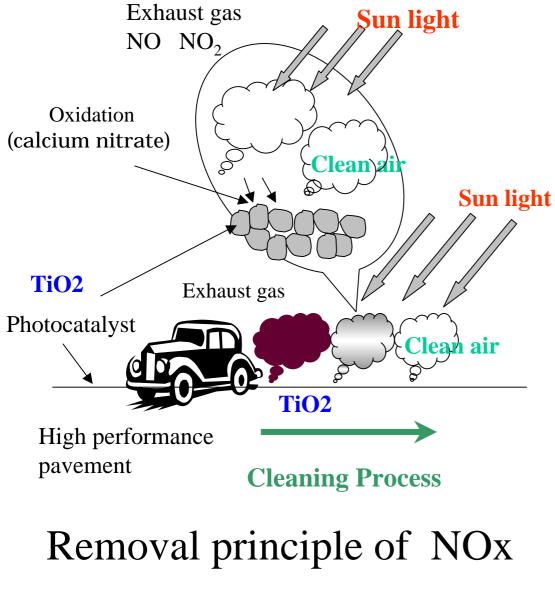
|                      | Compressive strength (N/mm <sup>2</sup> ) |     |             |        |    |    |  |
|----------------------|-------------------------------------------|-----|-------------|--------|----|----|--|
|                      |                                           |     |             | (days) |    |    |  |
| Type of cement       | 3hr                                       | 6hr | 1           | 3      | 7  | 28 |  |
| Portland cement type | nt type – – 9 22 37                       |     | 37          | 53     |    |    |  |
| Rapid-hardening type | 10                                        | 16  | 23          | 30     | 38 | 46 |  |
| NPC                  | _                                         | _   | 11 27 43 59 |        |    |    |  |


### Project of eco-cement

- 1991 Starting the eco-cement project
- 1994 50ton/day Test Plant Operation
- 2001.4 350ton/day (95,000ton/year) 1<sup>st</sup> Commercial Eco-cement plant
   90,000ton/year of incinarotor ash from 2,500,000 people can be treated in Ichihara Plant (Chiba Prefecture)
- 2004 800ton/day (200,000ton/year) 2<sup>nd</sup> Commercial Eco-cement plant started to construction
- 2006 2<sup>nd</sup> Plant will start to operation.





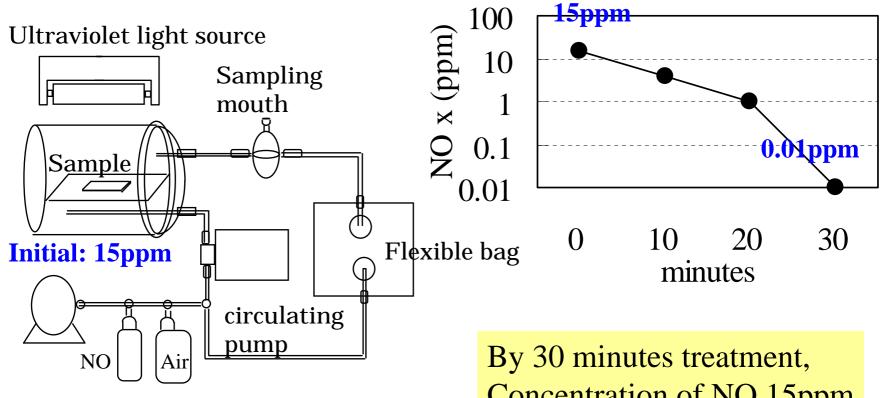





### Construction work of 2<sup>nd</sup> Plant TAMA Eco Cement

3. Purifying the environment with concrete photocatalyst road, whereby  $TiO_2$  decomposes NOx with ultraviolet rays

#### **Ultraviolet rays light**




Air pollution of NOx by cars has become a serious problem.

The  $TiO_2$  photocatalyst creates active oxygen molecules on the surface when the ultraviolet rays light (sun light) the  $TiO_2$ photocatalyst.

Rapidly NOx in the air is oxidized into nitric acid by active oxygen molecules.


05/08/11



Vacuum pump

By 30 minutes treatment, Concentration of NO 15ppm Reduce to 0.01ppm.

Test equipment Performance of reducing NOx



#### Application of photocatalyst TiO2 on wall



#### Application of photocatalyst TiO2 on road

### Construction using photocalalyst TiO2 (in Japan)

| year   | m <sup>2</sup> |
|--------|----------------|
| 1997   | 2300           |
| 1998   | 5000           |
| 1999   | 7200           |
| 2000   | 5200           |
| 2001   | 4600           |
| 2002   | 4700           |
| 2003   | 5800           |
| 2004   | 8700           |
| (2005) | (12000)        |

Porous concrete is key technology to manage the environmental system.

### Table Field of Porous Concrete Application

- Sowed concrete
- Permeable concrete
- Insulation block
- Humidity control block
- Photocatalyst pavement
- Crab libable sea wall
- Fish bank, Sea grass bed

4. Encouraging natural flora and fauna, with **bio-sowed concrete** technology

#### **Background:**

Ministry of construction of Japan changed a law concerning to management of river for the benefit of amenity of the river landscape in 1997.

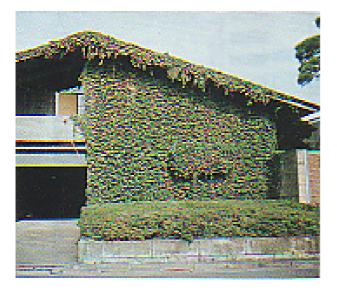
The ministry is focusing on the improvement and maintenance of the river environment for natural flora and fauna in addition to previous mandates of flood control and forestry conservation.

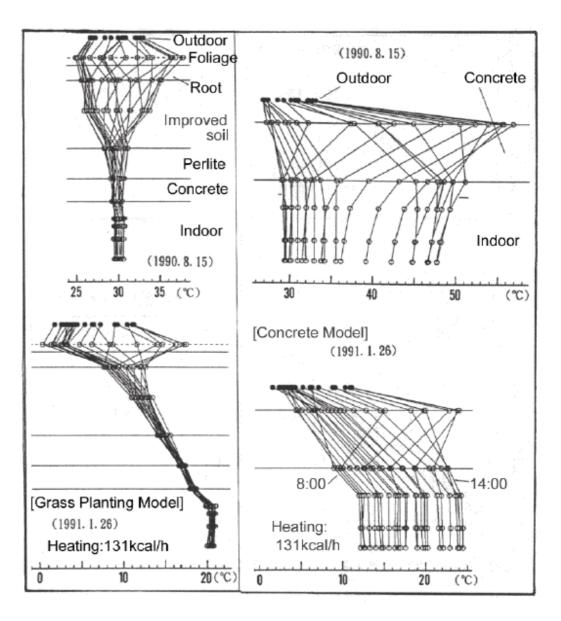
### **7 years Plan (1997-2003) of Flood Control Work** (The Ministry of Construction: Japanese Government)


|                        | Material,                               | Length |
|------------------------|-----------------------------------------|--------|
|                        | Construction Method                     | (km)   |
| River slope without    | River slope with plant                  | 2,300  |
| concrete               | River slope with stone, wood etc.       | 1,400  |
| River Slope inevitably | River slope with concrete (not exposed) | 2,000  |
| covered with concrete  | River slope with concrete (exposed)     | 1,600  |
| Total                  |                                         | 7,300  |






| Table Sample for Mix Proportion of Porous Concrete |                                                                        |              |            |         |                   |                             |                           |
|----------------------------------------------------|------------------------------------------------------------------------|--------------|------------|---------|-------------------|-----------------------------|---------------------------|
| Field of                                           | Air void                                                               | Water/Cement |            |         | Unit we           | veight (kg/m <sup>3</sup> ) | )                         |
| concrete                                           | (vol. %)                                                               | (wt. %)      | Water      | Cement  | Sand              | Aggrigate                   | Other                     |
| Sowed concrete                                     | 25.2                                                                   | 30           | 81         | 271     |                   | 1540                        | Super prasticizer 0.8     |
| Concrete pavement                                  | 18                                                                     | 22           | 67         | 300     | 187               | 1461                        | Admixture 74              |
| 7                                                  | Table Compressive and Bending Strength of Porous Concrete <sup>1</sup> |              |            |         |                   |                             |                           |
| Fie                                                | eld of                                                                 | Compressiv   | ve Strengt | th (N/m | $\overline{1}m^2$ | Bending Stree               | ngth (N/mm <sup>2</sup> ) |
| cor                                                | ncrete                                                                 | 7 days       | 28 days    | 56 (    | days              | 28                          | days                      |
| Sowed                                              | l concrete                                                             | 14.8         | 18.6       | 20      | 0.5               |                             | _                         |
| Concrete                                           | e pavemen                                                              | ıt –         | 27.4       | _       |                   | 4                           | .61                       |


...



I- I -

iv) Reducing the heat
island phenomenon in
urban areas
through sowed
concrete technology





Closing :

### Role of Cement and Concrete

The 20th century has been the century of concrete. Throughout the 20th century, concrete has contributed to human society as the basic construction material.

Now, towards <u>the 21st century</u>, the cement industry will become a greater contributor to society by taking on a second role as an <u>environmental system</u> <u>manager</u>. The cement and concrete industry will also provide a solution to municipal and industrial waste problems and to manage sound environment.