Report on the COE research activity

Research Fellow for COE Program
Sang Ho Cho

Topic of my research is 「Development of high precise fracture control technique for recycling and treating solid wastes」. Information regarding the dynamic fracture properties of solid material such as rock and concrete is of considerable importance in controlling the fracture under dynamic loads. In the study reported here, a series of dynamic tensile test using Hopkinson’s effect and Brazilian test were conducted to determine the dynamic tensile strength and investigate the fracture propagation under dynamic loads. The dynamic tensile tests were simulated by using a suggested dynamic fracture process analysis to examine the fracture process and mechanism of solid materials subjected to dynamic loads. The studies mentioned above were extended to investigate the influence of applied stress waveform on the fracture process in rock, and examine the effect of a guide hole between the charge holes on the fracture control in a PMMA specimen. The findings of these studies are summarized as follows:

1. It was pointed out that the dynamic tensile strength based on Hopkinson’s effect combined with the spalling phenomena is influenced by the inhomogeneity of the rock, the stress rate, crack arrests due to the stress released at adjacent microcracks, and the crack propagation velocity, as well as other factors.

2. In the dynamic Brazilian test, the compressive fractures around the end of mortar specimen contacting the loading points causes the peak stress of the specimen and the tensile fractures contributes to the failure of the specimen after the peak stress.

3. The fracture processes were affected more by the rise time increases than by the decay time. A higher stress-loading rate increased the number of radial cracks and led to intense stress release around running cracks. The stress release caused by adjacent cracks interfered with crack extension and resulted in shorter crack propagation. At lower stress-loading rates, the number of cracks and the crack arrest caused by the stress released at adjacent cracks were reduced, leading to longer crack extension. These analyses revealed that the earlier preferential crack branching occurred, the greater the extension of the crack.

4. Model experiments using PMMA specimens and electric detonator were simulated using a dynamic fracture process analysis to investigate the efficiency of guide hole to controlling fracture propagation. It was confirmed that the guide hole method is applicable in field usage.
Publications:


Presentations: