An Introduction to Quantum Key Distribution

Akihisa Tomita
Quantum Computation and Information Project,
ERATO-SORST, JST
Nano Electronics Research Laboratories, NEC Corp.
Security in optical communication networks

- Improved technology: High-Quality, High-speed, Highly robust to disturbance – *Insensitive to eavesdropping*

- Protection by cryptography

- Dark-fibers: easily tapped

- Carrier’s private network

- Intra-net

- Database/server

- Access network

- station
Threat by innovating technologies

- Shor’s and related quantum algorithms
 - Efficient solution for factorization, discrete log, …. (on which the security of public key cryptography relies)
- Grover algorithm for database search
- Progress in computers (reduces time to break codes)
- Invention of new algorithm
 - One-way has not been proved
 - Back doors may be exist in a certain implementation
Code breakers in the fictitious world

• ‘TRANSLTR,’ a huge computer in Dan Brown’s novel “DIGITAL FORTRESS”
 – 5yrs. development period
 – $1.9 B cost
 – 3 M processors in parallel
 – 10,000 bit-key decrypted in an hour
RSA Challenge (it’s real)

- current key: 1024 bits
- may need to upgrade

affordable resource ➔ security
Secure communication

- Caesar’s Cipher
 - algorithm: replace a character by the k-th one in the alphabet
 - Key: a number k
 - example:
Perfectly secure cryptography

- Vernam cipher (One-time-pad)
 - $C = M \oplus K$
 - Fresh keys (used only once)
 - Length(M) = Length(K) = Length(C) = const.

![Diagram showing Vernam cipher](image)

Plain text

key

Cipher text

Plain text

Common TRUE random numbers

10100101

11101011

01001110

"N"

10100101

11101011

01001110

"N"
Requirements for common keys

- Secure communication with Vernam cipher

- Key shared by Alice and Bob
- Negligible information for eavesdroppers
- Statistically random

Key distribution

Error rate: ex. $<10^{-9}$

- $\chi(K) \leq 2^{-\delta}$
 - ex. $\delta = 8$

Pass the RN tests:
- ex. FIPS140-2
- SP800-22
Adversaries

- Collect pairs of [plain texts] and cipher texts
- Guess key (cryptanalysis)
- Decode the following cipher texts
 - impossible for one-time-pad
 - only way is eavesdropping key distribution to know the key used in cipher

- try to get as much as information on the key

- If Adversaries' information on raw key is bounded, their information on final key can be reduced by Privacy Amplification
Quantum Key Distribution
～security based on laws of physics～

- A protocol to share random numbers (cryptographic key) between remote parties
- Everlasting, unconditional security guaranteed by quantum mechanics and Information theory, i.e., Any computers (incl. quantum) cannot draw key information
- Detection of eavesdropping, or guaranteed security
- by limiting eavesdropper’s information
Mission impossible: to distinguish two states with a single measurement

- classical states = possible
- orthogonal states = possible
- non-orthogonal states = impossible

If you had many copies, it would be possible without a trace disturbance upper bound of information

error free

50% error
Secure key distribution with quantum communication

Application

Decoding

Privacy amp.

error correction

transmission

Coding

TX

RX

secure key

erase leakage info

common random numbers

key

secure key

estimate leakage information

Bob

Alice

Eve

Quant. Comm.
Errors and Eve’s information

Alice: + basis

\[|1\rangle_+ \]

Eve: + basis

\[|1\rangle_+ \]

Eve gets information

Alice: x basis

\[|1\rangle_x \]

Eve causes error

missing phase information

\[
|0\rangle_+ \left| 0 \right
angle + |1\rangle_+ \left| 1 \right
angle
\]

Eve’s state

\[
\max_{[Z]} \left\| \rho_{[Z]} - \bar{\rho}^E \right\| \leq P_{ph} \leq 2^{N \bar{h}(n_e/N) - m}
\]

\[
\bar{h}(x) = -x \log_2 x - (1-x) \log_2 (1-x) ; 0 \leq x \leq 1/2
\]

Alice’s sent: \(l \) bits, final key: \(N \) bits

M. Hayashi, PRA 76, 012329 (2007)
Secure key distribution with quantum communication

Application

Decoding

Privacy amp.

error correction

transmission

Coding

Eve

Alice

Bob

TX

RX

secure key

erase leakage info

common random numbers

key

quantum communication

estimate leakage information

Coding
Error Correction Code

- Use redundancy to recover from error
- ex. correct one bit error

Encoding:
- 0 → (000); 1 → (111)

Channel:

- (000) (111)
- (100) (011)
- (010) (101)
- (001) (110)

Error correction
(2^m-1,2^m-1-m) Hamming code

- Parity check matrix $H=[I:P]$ $m\times m$: $m\times(2^m-1-m)$
 - list 2^m-1 vectors of m bits ex. $m=2$
 \[
 \begin{pmatrix}
 1 & 0 & 1 \\
 0 & 1 & 1
 \end{pmatrix}
 \]
- Generator matrix $G=[^tP:I]$ $(2^m-1-m)\times m$: $(2^m-1-m)\times(2^m-1-m)$
 \[
 (1 & 1 & 1)
 \]
- codeword \(c = aG\) \(a = \{0,1\}\)
 \[(000),(111)\]
- error \(v = c + e\)
- syndrome \(^t s = H^t v = H^t e\)

\[
\begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
1 \\
0
\end{pmatrix}
=\begin{pmatrix}
1 \\
0
\end{pmatrix}, \;
\begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
0 \\
1
\end{pmatrix}
=\begin{pmatrix}
0 \\
1
\end{pmatrix}, \;
\begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
0 \\
0
\end{pmatrix}
=\begin{pmatrix}
1
\end{pmatrix}
\]

\[
H^t c = H^t G^t a = 0
\]

\[
H^t G = \begin{bmatrix} I \\ P \end{bmatrix} \begin{bmatrix} P \\ I \end{bmatrix} = P + P = 0
\]
Privacy amplification

- Alice and Bob share N random bits W
- If Eve's knowledge about W is at most $\Theta < N$
- Alice and Bob can distill $N - m$ bits of secure key K, which satisfies
 \[I(K) \leq 2^{-\delta} \quad (\delta = m - \Theta) \]
 with a random choice of universal hash function G
 $(N-m \times N)$ random matrix: $K = GW$

Bennett, Brassard, Crepeau, Maurer, IEEE Trans. IT 41, 1915 (1995)
BB84 protocol

Alice
- Random numbers
- Select one basis
- Single photon
- Shared key

Bob
- Select one basis
- Demodulation
- Shared key

Quantum channel
- Modulation

Classical channel
- Basis sift, error check, reconciliation,

Eve
- Interception
Assumptions on security proof of BB84

• Quantum mechanics is correct
• An authenticated classical communication channel exists
 – Eve can hear, but cannot modify
• Legitimated users are isolated from outside
 – eavesdropping is allowed only on the channel
Security proof of BB84 by Shor and Preskill

Shor & Preskill, PRL 85, 441 (2000)

• A CSS code (quantum error correction code) to achieve unconditional security:
\[\chi_E(R) \rightarrow 0 \] with the rate
\[R = 1 - h(e_x) - h(e_+) \]
• assuming perfect devices (single photon source and single photon detector*)

\[h(x) = -x \log_2 x - (1-x) \log_2 (1-x) \]

* Mayers proved the unconditional security with imperfect photon detectors before Shor-Preskill (1996)
Improvement of security proof

• Classical error correction and privacy amplification (Koashi & Preskill)

• The above holds for finite length code in the sense that Holevo information is bounded by: \(\chi_E \leq 2^{-\delta} \) (Hayashi)

• Imperfect photon detectors (Mayers, Koashi, ILM)

• Eve’s information should be measured with Holevo information or distance norm to guarantee the universal composability (Renner & others)
Assumptions on BB84 protocol

ideal

• single photon source
 – one photon for one bit
• infinite computational resource
 – infinite code length (asymptotic)
• infinite code length, infinite time to measure
 – no estimation error
 – no fluctuation

practical

• weak coherent light
 – 0,1,2,... photons for one bit
• finite memory capacity, execution time
 – finite code length
• finite code length, finite time
 – sampling error
 – fluctuation

Can we extract secure keys under the practical assumptions? Yes, with decoy method.
PNS (Photon Number Splitting) Attack

- Effective attack on weak coherent pulse

Average Photon Number μ

$P(n, \mu)_{n \geq 2} \geq 1 - \exp[-T\mu]$

- If more than two photons in a pulse, take one and keep it.
- If one photon, cut the line.
- Measure the photon after the basis is open, and get full information.
- For large channel loss, Eve is not detected.
Information Leakage

Eve

No photons

1 part of key information

disturbance

2 or more all the key information

no disturbance

Alice

probabilistic

WCP

Bob
detection events: J^0
disturbed bits: t
detection events: J^1
detection events: J^2

Information on Bob’s sift bit: $J^0 + J^1 \bar{h}(t/J^1) + J^2$ (GLLP04)
Idea of Decoy method

Decoy method [Hwang PRL 91 057901(03)]

Photon number: known
Ave. photon number: unknown

Check bits

<table>
<thead>
<tr>
<th>μ</th>
<th>detection</th>
<th>error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>....</td>
<td>....</td>
</tr>
<tr>
<td>1</td>
<td>....</td>
<td>....</td>
</tr>
<tr>
<td>2</td>
<td>....</td>
<td>....</td>
</tr>
<tr>
<td>...</td>
<td>....</td>
<td>....</td>
</tr>
<tr>
<td>k</td>
<td>....</td>
<td>....</td>
</tr>
</tbody>
</table>

Asymptotic theory for \(k = 1,2 \) given by Wang PRL 94 230503 (05) and Lo, et al PRL 94 230504 (05)
Implementation: How to certificate security?

• Ingredients
• protocol
• process
• calibration/test
• qualification
• transport
• storage
• usage
Making QKD equipment

- q-commun.:
 - Light Source
 - encode/decode
 - detector

- q-encoder (interferometer + PM)

- q-decoder (interferometer)

- control:
 - clock sync.
 - RNG
 - frame sync.
 - temp.

- signal processing:
 - raw key
 - sift
 - channel estimation (leakage information)
 - error correction
 - privacy amplification

- RNG
- LS
- clock
- detector
A QKD system under development

PLC: Planar Lightwave Circuit

Bob

Alice

Pulse LD

PLC

RNG

RNG

LD

clock regen.

CWDM

compact APD module

PLC module

ATCA

sub-board

main-board
PLC characteristics

1.55 µm Pulsed

excess loss < 1 dB

negligible PDL

stabilized within 0.01 °C

Depolarized

PLC characteristics

excess loss < 1 dB

negligible PDL

stabilized within 0.01 °C

Depolarized

stability

polarization independence

Visibility

$\Delta \phi = 2\pi N$

Counts/sec

0 1 2 3 4

17.8 18 18.2 18.4

Temperature (°C) T_A

1 hour

1 hour

17.8 18 18.2 18.4

Temperature (°C) T_A

17 17.5 18 18.5 19 19.5

Temperature (°C) T_B

1 0.99 0.98 0.97 0.96 0.95

0.99 0.98 0.97 0.96 0.95
Issues for high speed operation

• high speed photon detector
 – APD (afterpulse, RF circuit)
 – SSPD

• True random number generator
 – LSI’s
 – entanglement-based (built-in randomness)

• Signal processing circuit
 – high clock frequency, large memory, code length \(\sim 1 \text{Mbit} \)
 – development of special purpose circuit board
Field experiment of fast QKD transmission

Transmitter (Alice)

\[E_{out} = E_{in} \cos\left(\frac{\phi_1 - \phi_2}{2}\right) \cdot \exp\left(i \frac{\phi_1 + \phi_2}{2}\right) \]

Receiver (Bob)

Sift key transmission performance

- No degradation caused by WDM
 Nonlinear noise can be successfully suppressed
- Stable for more than 6 h
- Final key rate estimation using decoy
 \(\mu = 0.4 \text{ photon/pulse} \)
 \(\mu' = 0.15 \text{ photon/pulse} \)
 \(\mu'' = 0.0 \text{ photon/pulse} \)
 Final key rate: \(0.78 \sim 0.82 \text{ kbps} \) (asymptotic)

We could have claimed “secure QKD experiment,” if done in 2002
What’s the problem?

• Transmitter
 – PRNG
 • should be replaced by high speed TRNG
 – fixed intensities
 • should be change pulse-to-pulse
 – phase correlation between pulses?
 • no, we drove the laser in gain-switch mode.

• Receiver
 – different detector efficiencies
 • should be calibrated
 – passive basis choice
 • probably no problem

• Post processing
 – finite key
 • not yet
 – off-line
 • high speed electronics (hardware logic) under development
Performance prospect

100kbps with ~GHz clock

Key generation rate (per pulse)

Transmission distance (km)

Eve’s information on final key:
\[\chi_E \leq 2^{-9} \text{(bits/4kb final key)} \]

- asymptotic (3 decoy)
- no external photons
- fiber loss: 0.17dB/km
- receiver loss: 5dB
- visibility: 0.94
- detector efficiency: 0.1

\[p_D = 4 \times 10^{-7} \]

Hasegawa et al.: arXiv 0707.3541
QKD provides Values in...

- Strategic information link
 - Extreme security (one-time-pad)
 - long distance
 - small market
- Key Infrastructure
 - Replacement of PKI (D-H key exchange)
 - compatibility with existing network
- ad-hoc/terminal/FTTH
 - weakest link
 - cost
 - really necessary?
Highly secure network

>1000km
Repeater; satellite (semi classical, quantum)
QKD Network

- transmission \((1:1, 1:N, N:M)\)
- relay
- key sharing
- monitor
- path-control
- buffer

\(N\) shared key
Interconnectivity

1. Functions
 • Interface between different vendors’ equipment
 • Common key file structures

2. Compatibility between systems
 • photon transmission
 • error correction (data exchange)
 • privacy amplification (data exchange)

3. Key synchronization
 • encryption/decryption
 • compensation of the difference on the specification
 • error rate
 • key (clock) rate

“classical” connection would be a practical solution
Satellite scenario for long distance transmission

• Satellite as a trusted repeater
 – no limitation on transmission distance

• QKD experiments in free space (EU)
 – La Palma-Tenerife (144km)
 – entangled photons / WCP (decoy method)
Rapid intensity change from LEO

OICETS (Kirari) Circular orbit, altitude~610km

- Short time window ~3min
 - tracking
 - # of bits (not enough for good statistics)
 - timing (clock synchronization)
 - $\Delta t \sim 5\text{ns}$ demonstrated by Villoresi, et al (NJP10 033038 (2008))
 - higher clock?
 - Intensity change by range, thickness of atmosphere
 - can be compensated using orbital data.
 - Security? (Eve also knows it)
Fluctuation by atmosphere

• Intensity/phase
 – wind, turbulences
 • distorted wavefront
 – temperature
 • refraction angle
 – scattering, diffraction by small particles

• Difficult to use decoy;
 – E91, or other protocols
 • key rate, statistics

Beam spot from the satellite (NICT)

LEO-Ground optical communication experiment by NICT (March & May, 2006)
Cryptography

• not complete with secure key distribution
• Functions of cryptography
 – Confidentiality
 – Integrity
 – Authentication
QKD may have crossed the Valley of Death to get into the Darwinian Sea….

“Struggle for Life” in a Sea of Technical and Entrepreneurship Risk

Prof. Lewis M. Branscomb, Harvard University
• Symbol of communication, security (Native American)
• Symbol of tall talking (Japanese)

To clarify what we can promise to the costumers
Conclusion

• Security proof on QKD has been almost established
• Successful proto-types have proved feasibility
• To survive in Darwinian sea
 – Propose business models
 • application
 • cost/value
 – Define specification
 – improve performance
 – system integration
collaborators

QCI pj.
- M. Hayashi (moved to Tohoku U.)
- J. Hasegawa
- T. Hiroshima

NiCT
- M. Sasaki
- M. Fujiwara
- S. Miki
- Z. Wang
- M. Toyoshima

NEC
- A. Tajima
- A. Tanaka
- W. Maeda
- S. Takahashi
- Y. Nambu
- K. Yoshino

NIST
- S.-W. Nam
- B. Beak

NEC’s work has been partly supported by NICT