How to Control MBR

Biological aspects
Hydrodynamic aspects

Roger BEN AIM
INSA Toulouse
benaim@insa-tlse.fr

Sapporo COE course July 2004
For a given effluent

• SRT is the only operational parameter which is quite different from conventional activated sludge process where the sludge recycling flowrate was an additional parameter.

• The consequences of a change in SRT are not immediate.
Why changing the SRT

• For trying to get constant F/M ratio despite the variation of the effluent (flowrate and/or concentration): this implies a variation of the biomass concentration.

• Or for trying to get a constant biomass concentration which implies a variation of the F/M ratio.

• What is the best policy?
Due to the inerty of the biomass

- This policy would need not a steady state model but a dynamic model.
- In fact a neural network model able to anticipate the variation would probably be suited.
In the absence of such a model,

- An equalization tank would be useful.
- A primary settler could play this role with the additional advantage of reducing the SS at the inlet of the bioreactor.
- Most of the non volatile SS could be removed thus preventing their accumulation in the aerated tank.
For instance

- For a SRT of 15 days
- a HRT of 4 hours
- A biomass concentration of 10 g/l
- The removal of 50 mg/l of non volatile solids will result in a decrease of 40% of the sludge concentration.
Is a more efficient pretreatment needed?

- **Advantages:**
  - Preflocculation and settling decreases dramatically the SS and the organic load.
  - Smaller aerated tank
  - Smaller sludge concentration
  - Faster biodegradation
  - Elimination of most of the potential fouling agents in the feed.
  - Phosphorus Removal

- **Drawbacks:**
  - Production of inorganic (chemical) sludge.
  - Control of phosphorus needed.
  - The decrease in membrane area may be not sufficient for balancing the additional investment and operational cost.
Other Idea?

- Addition of PAC
- for adsorption of organics present in the supernatant
- And thus stressing the biomass for minimizing the yield
- In addition less fouling of the membrane

- Continuous addition and withdrawal.
- Advantage: PAC is more efficient
- Disadvantage: cost and sludge production.

- Periodic addition and withdrawal: bioregeneration of PAC?
- Advantage: minimization of PAC use, sludge production and cost
- Drawback: efficiency?
Other idea?

• Supported biomass + membrane separation
• The advantages of supported biomass:
  - More resistant to feed variation
  - Less fouling?
• But due to membrane separation, suspended cells are retained and accumulated in the reactor.
• See the papers of Tor Ove LEIKNES (NTNU)
A new idea

• COD and nitrogen removal by biofilms growing on gas permeable membranes
• Michael J. Semmens, Karl Dahm, John Shanahan and Alina Christianson
Results

- N removal rates as high as 1 Kg/m3-day or 2 g/m2-day were obtained while the corresponding COD removal rates were 4.5 Kg/m3-day or 10 g/m2-day.
- No result concerning phosphorus removal
- Difficulty in controlling the biomass growth
MBR

For Nutrient Removal

Sapporo COE course July 2004
Nutrient Removal

• Is one of the present targets of waste water treatment in most developed countries.
• Nitrification/ denitrification has already be put in operation at large scale in conventional activated sludge processes as in MBR
• Less experience on P bio-removal
NUTRIENT REMOVAL

• Occurs naturally by the discharge of excess sludge (C/N/P : 100/5/1 ) and is thus dependent of the sludge age.
• Higher the sludge age, lower the excess sludge production ,higher the organics removal ,lower the nutrient removal by the bio-production.
• However different mechanisms for N and P.
Nitrification

• Is dependent on the growth of a population of nitrifying bacteria
• This occurs when the sludge age (SRT) is greater than 5 days.
• Higher the sludge age, higher the efficiency of nitrification
• MBR are very efficient in nitrification

Sapporo COE course July 2004
MBR with Nit. Denit.

- MBR is naturally suited for Nitrification (large SRT)
- Denitrification can be easily obtained in an anoxic tank upstream of the aerated tank
- Or eventually in the same aerated tank with intermittent aeration
Nutrient Removal - N

Q

Anoxic

Aerobic

Permeate

Waste

Sludge

W

Sapporo COE course July 2004
Sapporo COE course July 2004

Anoxic

Pre-screen

Biosolid

Raw sewage

Aerobic

RAS

Membrane

Effluent

Air

Sludge disposal

Sapporo COE course July 2004
Denitrification

• Needs the growth of a population of denitrifying bacteria.
• This occurs in anoxic conditions with the simultaneous presence of Nitrates and organics in adequate concentrations.
• Generally obtained by recirculating the treated water in an anoxic tank upstream of the aerated tank.
The aerated tank

- Can be designed with periodic anoxic zone
- Even with submerged membranes needing a permanent bubbling.
Some recent studies
Removal of N and C by a porous carrier–membrane hybrid process+-
Byong-Hee Juna, Kazuhiko Miyanaga, Yasunori Tanji and Hajime Unno,

• Using supported biomass for enhancing nitrification/denitrification in the biofilm
Supported biomass + membrane

- A porous carrier–membrane hybrid process was found to have improved nitrogen removal efficiency, due to stimulated denitrification as well as nitrification. The hybrid system achieved a 30% higher nitrogen removal ratio than that in the fluidized porous carrier system.
Conclusion

• Hybridizing a fluidized porous CS with a membrane system (HS) was studied.
• The intracarrier denitrification rate was twice as fast
• The nitrogen removal was not solely due to microbial nitrification/denitrification but also assimilation derived from microbial growth.
• The HS examined in the present study will be effective for the improved treatment of wastewater.
Membrane Sequencing Batch reactor

• Attempts for N and P removal
Membrane sequencing batch reactor system
for the treatment of dairy wastewater
Tae-Hyun Bae, Sung-Soo Han and Tae-Moon Tak • SNU

- subcritical flux operation, and intermittent suction method
- the system could be operated for more than 110 days with only one membrane washing
- BOD removal 97–98%.
- SS-free effluent
- nitrogen removal rate reached 96%.
- Phosphorus removal reached 80% after system optimization

Sapporo COE course July 2004
MSBR 2

Sapporo COE course July 2004
MSBR 3

Sapporo COE course July 2004
MSBR 4

Sapporo COE course July 2004
The difficulties of P bio-removal

Sapporo COE course July 2004
P increase during aeration period
Conclusions MSBR

- Suited for dairy industry effluent
- Subcritical flux operation and intermittent suction
- High BOD removal
- High N removal
- P removal up to 80% in optimized conditions
Enhanced biological P and N removal using a sequencing anoxic/anaerobic membrane bioreactor (SAM) process

Kyu-Hong Ahn\textsuperscript{a}, Kyung-Guen Song\textsuperscript{a}\textsuperscript{-\textsuperscript{\cdot}}, Eulsaeng Cho\textsuperscript{a}, Jinwoo Cho\textsuperscript{a}, Hojoon Yun\textsuperscript{a}, Seockheon Lee\textsuperscript{a} and Jaeyoung Kim\textsuperscript{b}

KIST and SNU
SAM Process: conditions of operation and results

- Filtrate flux: 10 L/m²/h (30 L/d).
- The phosphorous removal was good 93%. By supplying strict anaerobic conditions without an internal recycle, the phosphorus release was reduced in a significant amount, resulting in excellent uptake of phosphorus in the aerobic zone.
- The nitrogen removal efficiency of the SAM was poor about 60
Coupling Physico-chemical removal of P with biological removal of N

• Fe and Al salts are very effective for the removing of P as phosphates which precipitate and are removed with the excess sludge.

• For domestic effluents the additional sludge production is small and the Fe concentration in the treated water and in the sludge is small too.
Hydrodynamic control of membrane operation

How to minimize the fouling with small energy consumption?
Figure 5. Effect of air flow rate on the Rt/Rm ratio at different activated sludge concentration.

Sapporo COE course July 2004
Pilot’s P&ID

Air Manifold to Membranes

Air Blower
Vent

Permeate Recycling
Backpulse
Permeation

Permeate and Backpulse pump

Membrane

Process Tank

Sapporo COE course July 2004

CIP Tank
Fouling Curves

- Flux at 20°C
- TMP

Slope #1
Slope #2
Slope #3
Slope #4
Slope #5
Slope #6
Slope #7

Sapporo COE course July 2004
Fouling Rate Determination

Sapporo COE course July 2004

Fouling rate (Pa/min)

ZW 500

Value of Slope #1
Value of Slope #2
Value of Slope #3
Value of Slope #4
Value of Slope #5
Value of Slope #6
Value of Slope #7

Permeate Flux (l/h.m²)

Sapporo COE course July 2004
Evolution of the Fouling Rate with the Air Flow in Continuous Aeration

Fouling rate (Pa/min)

Permeate flux (l/h.m²)

Sapporo COE course July 2004
Evolution of the Fouling Rate with the Cycling Frequency

Sapporo COE course July 2004

Permeate flux (l/h.m²)
Advantages of Cyclic Aeration

- **Unsteady State Generation**
  - Higher local aeration intensity, bigger bubbles
  - Reduction of bubble by-pass between fiber bundles
  - Increased contact between fibers and bubbles

- **Density Gradients**
  - Lateral liquid flow through the fiber bundle
  - Increased fiber movement
Influence of Cycling for the Treatment of Municipal Wastewater

Continuous aeration

0.68 m$^3$/h.m$^2$

Air cycling 10s-10s at 0.34 m$^3$/h.m$^2$ average

Permeability (l/h.m$^2$.bar)

Time (days)

Sapporo COE course July 2004
Some economic considerations
Product Cost curve

Sapporo COE course July 2004

Cumulative membrane area - metres

System $/kL/day installed


CMF "S"

M1 Series M2 Series


1999
Wastewater: Cassette Size

Membrane area (m²)

ZW-130 (1994)

ZW-150 (1995)

ZW-500a (1997)

ZW-500c (2000)

Sapporo COE course July 2004
## Replacement cost in Euros/M³

(Membrane life: 50,000 Hours)

<table>
<thead>
<tr>
<th></th>
<th>10 L/M².h</th>
<th>50 L/M².h</th>
<th>100 L/M².h</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 Euros/M²</td>
<td>0.08</td>
<td>0.016</td>
<td>0.008</td>
</tr>
<tr>
<td>80 Euros/M²</td>
<td>0.16</td>
<td>0.032</td>
<td>0.016</td>
</tr>
<tr>
<td>100 Euros</td>
<td>0.2</td>
<td>0.04</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Sapporo COE course July 2004
Energy cost in membrane operation

- 1KWH = 0.05 Euro
- Cross Flow … 1 – 3 KWh/M3 … 0.05 – 0.15 E/M3
- Bubbling … 0.1 – 0.3 KWh/M3 .. 0.005 – 0.015 E/M3
- Aeration … 0.3 – 0.6 Kwh/M3 .. 0.015 – 0.03 E/M3
Wastewater: Energy Consumption

Filtration
Aeration

Energy (kWh/m³)

Cyclic aeration

ZW-130 (1994)
ZW-150 (1995)
ZW-500a (1997)
ZW-500a (1999)
ZW-500c (2000)

Sapporo COE course July 2004
Wastewater: Cost

Membrane cost (per unit flow rate)

Relative cost (1994 cost equals 1)

<table>
<thead>
<tr>
<th>Product</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZW-130</td>
<td>1994</td>
</tr>
<tr>
<td>ZW-150</td>
<td>1995</td>
</tr>
<tr>
<td>ZW-500a</td>
<td>1997</td>
</tr>
<tr>
<td>ZW-500a</td>
<td>1999</td>
</tr>
<tr>
<td>ZW-500c</td>
<td>2000</td>
</tr>
</tbody>
</table>

Sapporo COE course July 2004
Municipal Market Growth

MF/UF/NF Worldwide Installed Capacities

Cumulative capacities (MLD)

Sapporo COE course July 2004